

Review Key Vocabulary

monomial, p. 330 degree of a monomial, p. 330 polynomial, p. 331 binomial, p. 331 trinomial, p. 331 degree of a polynomial, *p. 331* FOIL Method, *p. 343* factored form, *p. 358* Zero-Product Property, *p. 358* root, *p. 358* factoring by grouping, *p. 388* prime polynomial, *p. 389* factored completely, *p. 389*

Review Examples and Exercises

Polynomials (pp. 328–333)

a. Find the degree of $4x^2y$.

The exponent of *x* is 2 and the exponent of *y* is 1. The sum of the exponents is 2 + 1 = 3.

- So, the degree of the monomial is 3.
- b. Write $x + 1 + 2x^3$ in standard form. Identify the degree and classify the polynomial by the number of terms.

Polynomial	Standard Form	Degree	Type of Polynomial
$x + 1 + 2x^3$	$2x^3 + x + 1$	3	trinomial

Exercises

Write the polynomial in standard form. Identify the degree and classify the polynomial by the number of terms.

1. $2w^3 + 3 - 4w$ **2.** $-6y^2$ **3.** $-6.2 + 3t^5$

7.2

Adding and Subtracting Polynomials (pp. 334–339)

a. $(2d^2 - 3) + (4d^2 + 2)$ $(2d^2 - 3) + (4d^2 + 2) = (2d^2 + 4d^2) + (-3 + 2)$ $= 6d^2 - 1$

b.
$$(c^2 + 5c + 1) - (c^2 - 2)$$

 $(c^2 + 5c + 1) - (c^2 - 2) = (c^2 + 5c + 1) + (-c^2 + 2)$
 $= [c^2 + (-c^2)] + 5c + (1 + 2) = 5c + 3$

Exercises

Find the sum or difference.

4. (3a+7) + (a-1)**5.** $(x^2 + 4x - 2) + (6x^2 + 6)$ **6.** $(-y^2 + y + 2) - (y^2 - 5y - 2)$ **7.** $(p-9) - (-8p^2 + 7)$

7.3 Multiplying Polynomials (pp. 340–347)

Find (x + 1)(x - 4). First Outer Inner Last (x + 1)(x - 4) = x(x) + x(-4) + (1)(x) + (1)(-4) $= x^{2} + (-4x) + (x) + (-4)$ $=x^{2}-3x-4$

Use the FOIL Method. Multiply. Combine like terms.

Exercises

Find the product.

8. (y+4)(y-2) **9.** (q-3)(2q+7) **10.** $(-3\nu+1)(\nu^2-\nu-2)$

7.4 **Special Products of Polynomials** (pp. 348–353)

Sum and Difference Pattern
Use pattern.
Simplify.
Square of a Binomial Pattern
Use pattern.
Simplify.

Exercises

Find the product.

11. $(y+9)(y-9)$	12. $(2x+4)(2x-4)$
13. $(h+4)^2$	14. $(-1+2d)^2$

7.5 **Solving Polynomial Equations in Factored Form** (pp. 356–361)

Solve (x + 4)(x - 3) = 0.

(x+4)(x-3) = 0x + 4 = 0 or x - 3 = 0x = -4 or x = 3The roots are x = -4 and x = 3.

Write equation. Use Zero-Product Property. Solve for *x*.

Exercises

Solve the equation.

15. $x(x+2) = 0$	16. $(t-3)(t-8) = 0$
17. $(a + 10)^2 = 0$	18. $2s(s+1)(s-4) = 0$

Factoring Polynomials Using the GCF (pp. 362–367) 7.6

Factor $4z^2 + 32$.

Step 1: Find the GCF of the terms.

 $4z^2 = 2 \cdot 2 \cdot z \cdot z$ $32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

The GCF is $2 \cdot 2 = 4$.

Step 2: Write the polynomial as a product of the GCF and its remaining factors.

 $4z^2 + 32 = 4(z^2) + 4(8)$ Factor out GCF. $= 4(z^2 + 8)$ Distributive Property

Exercises

Factor the polynomial.

19. $6t^2 + 36$

```
20. 2x^2 - 20x 21. 15y^3 + 3y^2
```

7.7

Factoring $x^2 + bx + c$ (pp. 368–375)

Factor $x^2 + 12x + 27$.

Notice that b = 12 and c = 27.

- Because *c* is positive, the factors *p* and *q* must have the same sign so that *pq* is positive.
- Because *b* is also positive, *p* and *q* must each be positive so that p + q is positive.

Find two positive integer factors of 27 whose sum is 12.

Factors of 27	Sum of Factors
1, 27	28
3, 9	12

The values of p and q are 3 and 9.

So, $x^2 + 12x + 27 = (x + 3)(x + 9)$.

Exercises

Factor the polynomial.

22. $p^2 + 2p - 35$

23. $b^2 + 9b + 20$ **24.** $z^2 - 4z - 21$

7.8 Factoring *ax*² + *bx* + *c* (*pp. 376–381*)

a. Factor $2x^2 + 13x + 15$.

Consider the possible factors of a = 2 and c = 15.

Factors are 1 and 2.
$$\rightarrow 2x^2 + 13x + 15 \leftarrow$$
 Factors are 1, 3, 5, and 15.

These factors lead to the following possible products.

(1x + 1)(2x + 15)(1x + 3)(2x + 5)(1x + 15)(2x + 1)(1x + 5)(2x + 3)

Multiply to find the product that is equal to the original polynomial.

$$(x + 1)(2x + 15) = 2x^{2} + 17x + 15 \times$$
$$(x + 15)(2x + 1) = 2x^{2} + 31x + 15 \times$$
$$(x + 3)(2x + 5) = 2x^{2} + 11x + 15 \times$$
$$(x + 5)(2x + 3) = 2x^{2} + 13x + 15 \checkmark$$

• So,
$$2x^2 + 13x + 15 = (x + 5)(2x + 3)$$
.

b. Factor $5x^2 + 4x - 9$.

Consider the possible factors of a = 5 and c = -9. Because b is positive and c is negative, the factors of *c* must have different signs.

 \longrightarrow 5x² + 4x - 9 \longleftarrow Factors are ±1, ±3, and ±9. Factors are 1 and 5.

These factors lead to the following possible products.

(1x+1)(5x-9) (1x-1)(5x+9)(1x - 3)(5x + 3)(1x + 9)(5x - 1)(1x - 9)(5x + 1)(1x + 3)(5x - 3)

Multiply to find the product that is equal to the original polynomial.

 $(x + 1)(5x - 9) = 5x^2 - 4x - 9$ $(x+9)(5x-1) = 5x^2 + 44x - 9$ $(x-1)(5x+9) = 5x^2 + 4x - 9$ $(x-9)(5x+1) = 5x^2 - 44x - 9$ $(x-3)(5x+3) = 5x^2 - 12x - 9$ $(x+3)(5x-3) = 5x^2 + 12x - 9$ So, $5x^2 + 4x - 9 = (x - 1)(5x + 9)$.

Exercises

Factor the polynomial.

25.	$10a^2 + 11a + 3$	26. $4z^2 + 11z + 6$
27.	$2x^2 - 27x - 14$	28. $-2p^2 + 2p + 4$

29. OUTSIDE PATIO You are installing new tile on an outside patio. The area (in square feet) of the rectangular patio can be represented by $8x^2 + 33x + 4$. Write the expressions that represent the dimensions of the patio.

7.9 Factoring Special Products (pp. 382–389)

	Factor each polynomial.	
	a. $x^2 - 16$	
	$x^2 - 16 = x^2 - 4^2$	Write as $a^2 - b^2$.
	= (x+4)(x-4)	Difference of Two Squares Pattern
	b. $x^2 - 2x + 1$	
	$x^2 - 2x + 1 = x^2 - 2(x)(1) + 1^2$	Write as $a^2 - 2ab + b^2$.
	$=(x-1)^{2}$	Perfect Square Trinomial Pattern
	c. $x^3 + 4x^2 + 3x + 12$	
	$x^3 + 4x^2 + 3x + 12 = (x^3 + 4x^2) + $	(3x + 12) Group terms with common factors.
Commo	n binomial factor is $x + 4$. $\rightarrow = x^2(x + 4) + 3$	$F_{3}(x + 4)$ Factor out GCF of each pair of terms.
	$= (x+4)(x^2 +$	3) Factor out $(x + 4)$.
	d. $2x^4 - 8x^2$	
	$2x^4 - 8x^2 = \frac{2x^2}{x^2} - 4$	Factor out $2x^2$.
	$=2x^2(x^2-2^2)$	Write as $a^2 - b^2$.
	$=2x^{2}(x+2)(x-2)$	Difference of Two Squares Pattern
	Exercises	

Factor the polynomial.

30. $x^2 - 9$	31. $y^2 - 100$
32. $z^2 + 6z + 9$	33. $m^2 + 16m + 64$
34. $x^2 - 3x + 4ax - 12a$	35. $n^3 - 9n$