

Factor out (x + 3).

Key Vocabulary factoring by grouping, *p. 388* prime polynomial, *p. 389* factored completely, *p. 389*

To factor polynomials with four terms, group the terms into pairs, factor the GCF out of each pair of terms, and look for a common binomial factor. This process is called **factoring by grouping**.

EXAMPLE Factoring by Grouping

Factor each polynomial.a.
$$x^3 + 3x^2 + 2x + 6$$
Group terms with
common factors. $x^3 + 3x^2 + 2x + 6 = (x^3 + 3x^2) + (2x + 6)$ Group terms with
common factors.Common binomial factor is $x + 3$. $\Rightarrow = x^2(x + 3) + 2(x + 3)$ Factor out GCF of each
pair of terms.

b. $x^3 - 7 - x^2 + 7x$

The terms x^3 and -7 do not have a common factor. Rearrange the terms of the polynomial so you can group terms with common factors.

 $= (x + 3)(x^{2} + 2)$

$$x^{3} - 7 - x^{2} + 7x = x^{3} - x^{2} + 7x - 7$$
Rewrite polynomial.

$$= (x^{3} - x^{2}) + (7x - 7)$$
Group terms with common factors.

$$= x^{2}(x - 1) + 7(x - 1)$$
Factor out GCF of each pair of terms.

$$= (x - 1)(x^{2} + 7)$$
Factor out $(x - 1)$.

c.
$$x^2 + y + x + xy$$

 $x^2 + y + x + xy = x^2 + x + xy + y$
 $= (x^2 + x) + (xy + y)$
 $= x(x + 1) + y(x + 1)$
 $= (x + 1)(x + y)$
Rewrite polynomial.
Group terms with common factors.
Factor out GCF of each pair of terms.
 $= (x + 1)(x + y)$
Factor out (x + 1).

Practice

Factor the polynomial by grouping.

1. $n^3 + 2n^2 + 5n + 10$	2. $p^3 - 7p^2 + 3p - 21$	3. $2y^3 + 8y^2 + 3y + 12$
4. $6s^3 - 16s^2 + 21s - 56$	5. $8v^3 + 48v - 5v^2 - 30$	6. $2w^3 - w^2 - 18w + 9$
7. $x^2 + xy + 3x + 3y$	8. $a - ab + a^2 - b$	9. $4xy + 20y + 3x + 15$

388 Chapter 7 Polynomial Equations and Factoring

Multi-Language Glossary at BigIdeasMath

A **prime polynomial** is a polynomial that cannot be factored as a product of polynomials with integer coefficients. A factorable polynomial with integer coefficients is said to be **factored completely** when no more factors can be found and it is written as the product of prime factors.

EXAMPLE 2 Factoring Completely

Polynomial Equations

In this extension, you will
factor polynomials by grouping.
factor polynomials completely.
Learning Standards
A.REI.4b
A.SSE.2

A.SSE.3a

Factor each polynomial completely. $2r^3 = 18r^2 + 24r$

a.
$$3x^{3} - 18x^{2} + 24x$$

 $3x^{3} - 18x^{2} + 24x = 3x(x^{2} - 6x + 8)$ Factor out 3x.
 $= 3x(x - 2)(x - 4)$ Factor $x^{2} - 6x + 8$.
b. $7x^{4} - 28x^{2}$
 $7x^{4} - 28x^{2} = 7x^{2}(x^{2} - 4)$ Factor out $7x^{2}$.
 $= 7x^{2}(x^{2} - 2^{2})$ Write as $a^{2} - b^{2}$.
 $= 7x^{2}(x + 2)(x - 2)$ Difference of Two Squares Pattern

c.
$$p^2 + 4p - 2$$

The terms of $p^2 + 4p - 2$ have no common factors. There are no integer factors of -2 whose sum is 4. So, this polynomial is already factored completely.

EXAMPLE Solving an Equation by Factoring Completely

$2x^3 + 8x^2 = 10x$	Original equation
$2x^3 + 8x^2 - 10x = 0$	Subtract 10x from each side.
$2x(x^2 + 4x - 5) = 0$	Factor out 2 <i>x</i> .
2x(x+5)(x-1) = 0	Factor $x^2 + 4x - 5$.
2x = 0 or $x + 5 = 0$ or $x - 1 = 0$	Use Zero-Product Property.
x = 0 or $x = -5$ or $x = 1$	Solve for <i>x</i> .

The solutions are x = -5, x = 0, and x = 1.

Practice

Factor the polynomial completely, if possible.

10. $2x^3 + 10x^2 - 48x$ **11.** $5z^4 - 5z^2$ **12.** $20c + 4c^3 - 24c^2$ **13.** $y^2 + 6y - 5$ **14.** $q^2 - q + 7$ **15.** $3n^4 - 48n^2$

Solve the equation.

16. $k^3 - 6k^2 + 9k = 0$ **17.** $3x^3 + 6x^2 = 72x$ **18.** $4y^3 - 12y^2 - 40y = 0$