Key Vocabulary

factoring by grouping, p. 388
prime polynomial, p. 389
factored completely, p. 389

To factor polynomials with four terms, group the terms into pairs, factor the GCF out of each pair of terms, and look for a common binomial factor. This process is called factoring by grouping.

1 Factoring by Grouping
Factor each polynomial.
a. $x^{3}+3 x^{2}+2 x+6$

$$
x^{3}+3 x^{2}+2 x+6=\left(x^{3}+3 x^{2}\right)+(2 x+6)
$$

Group terms with common factors.

Common binomial factor is $x+3 . \rightarrow=x^{2}(x+3)+2(x+3)$ Factor out GCF of each pair of terms.

$$
=(x+3)\left(x^{2}+2\right) \quad \text { Factor out }(x+3)
$$

b. $x^{3}-7-x^{2}+7 x$

The terms x^{3} and -7 do not have a common factor. Rearrange the terms of the polynomial so you can group terms with common factors.

$x^{3}-7-x^{2}+7 x$	$=x^{3}-x^{2}+7 x-7$		
	$=\left(x^{3}-x^{2}\right)+(7 x-7)$		Rewrite polynomial. Group terms with common factors.
Common binomial factor is $x-1$.		$=x^{2}(x-1)+7(x-1)$	
	$=(x-1)\left(x^{2}+7\right)$		Factor out GCF of each pair of terms.
c. $x^{2}+y+x+x y$		Factor out $(x-1)$.	
$x^{2}+y+x+x y$	$=x^{2}+x+x y+y$		
	$=\left(x^{2}+x\right)+(x y+y)$		Rewrite polynomial. Group terms with common factors.
	$=x(x+1)+y(x+1)$		Factor out GCF of each pair of terms.
	$=(x+1)(x+y)$		Factor out $(x+1)$.

Practice

Factor the polynomial by grouping.

1. $n^{3}+2 n^{2}+5 n+10$
2. $p^{3}-7 p^{2}+3 p-21$
3. $2 y^{3}+8 y^{2}+3 y+12$
4. $6 s^{3}-16 s^{2}+21 s-56$
5. $8 v^{3}+48 v-5 v^{2}-30$
6. $2 w^{3}-w^{2}-18 w+9$
7. $x^{2}+x y+3 x+3 y$
8. $a-a b+a^{2}-b$
9. $4 x y+20 y+3 x+15$

A prime polynomial is a polynomial that cannot be factored as a product of polynomials with integer coefficients. A factorable polynomial with integer coefficients is said to be factored completely when no more factors can be found and it is written as the product of prime factors.

EXAMPLE
 2 Factoring Completely

Common Core

Polynomial Equations
In this extension, you will

- factor polynomials by grouping.
- factor polynomials completely.
Learning Standards
A.REI.4b
A.SSE. 2
A.SSE.3a

Factor each polynomial completely.

a. $3 x^{3}-18 x^{2}+24 x$

$$
\begin{array}{rlrl}
3 x^{3}-18 x^{2}+24 x & =3 x\left(x^{2}-6 x+8\right) \\
& =3 x(x-2)(x-4) & & \text { Factor out } 3 x . \\
& & \text { Factor } x^{2}-6 x+8 .
\end{array}
$$

b. $7 x^{4}-28 x^{2}$

$$
\begin{aligned}
7 x^{4}-28 x^{2} & =7 x^{2}\left(x^{2}-4\right) & & \text { Factor out } 7 x^{2} . \\
& =7 x^{2}\left(x^{2}-2^{2}\right) & & \text { Write as } a^{2}-b^{2} . \\
& =7 x^{2}(x+2)(x-2) & & \text { Difference of Two Squares Pattern }
\end{aligned}
$$

c. $p^{2}+4 p-2$

The terms of $p^{2}+4 p-2$ have no common factors. There are no integer factors of -2 whose sum is 4 . So, this polynomial is already factored completely.

EXAMPLE

3 Solving an Equation by Factoring completely

$$
\begin{aligned}
& 2 x^{3}+8 x^{2}=10 x \\
& 2 x^{3}+8 x^{2}-10 x=0 \\
& 2 x\left(x^{2}+4 x-5\right)=0 \\
& 2 x(x+5)(x-1)=0 \\
& 2 x=0 \text { or } x+5=0 \text { or } x-1=0
\end{aligned}
$$

\therefore The solutions are $x=-5, x=0$, and $x=1$.

Practice

Factor the polynomial completely, if possible.
10. $2 x^{3}+10 x^{2}-48 x$
11. $5 z^{4}-5 z^{2}$
12. $20 c+4 c^{3}-24 c^{2}$
13. $y^{2}+6 y-5$
14. $q^{2}-q+7$
15. $3 n^{4}-48 n^{2}$

Solve the equation.
16. $k^{3}-6 k^{2}+9 k=0$
17. $3 x^{3}+6 x^{2}=72 x$
18. $4 y^{3}-12 y^{2}-40 y=0$

