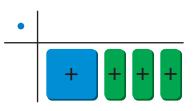
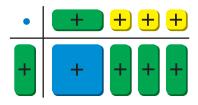

Factoring Polynomials Using the GCF 7.6

Essential Question How can you use common factors to write a

polynomial in factored form?

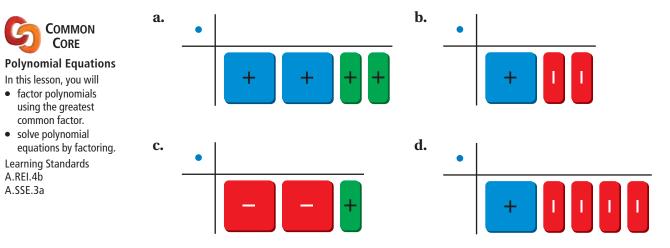

ACTIVITY: Finding Monomial Factors

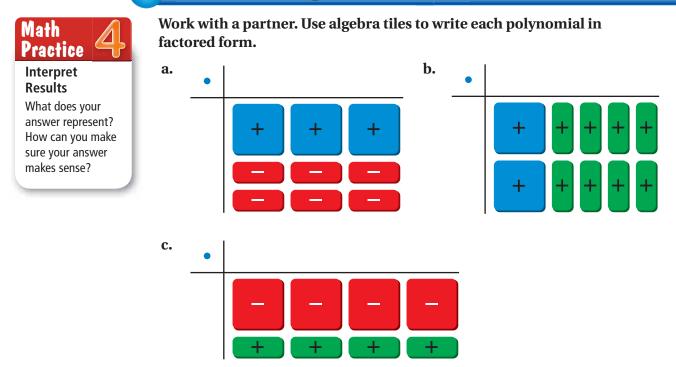
Work with a partner. Six different algebra tiles are shown below.



Sample:

Step 1: Look at the rectangular array for $x^2 + 3x$.


Step 2: Use algebra tiles to label the dimensions of the rectangle.


Step 3: Write the polynomial in factored form by finding the dimensions of the rectangle.

Area =
$$x^2 + 3x = x(x + 3)$$

Use algebra tiles to write each polynomial in factored form.

2 **ACTIVITY:** Finding Monomial Factors

3 ACTIVITY: Finding Monomial Factors

Work with a partner. Use algebra tiles to model each polynomial as a rectangular array. Then write the polynomial in factored form by finding the dimensions of the rectangle.

a.
$$3x^2 - 9x$$
 b. $7x + 14x^2$ **c.** $-2x^2 + 6x$

-What Is Your Answer?

- **4.** Consider the polynomial $4x^2 + 8x$.
 - **a.** What are the terms of the polynomial?
 - **b.** List all the factors that are common to both terms.
 - **c.** Of the common factors, which is the greatest? Explain your reasoning.
- **5. IN YOUR OWN WORDS** How can you use common factors to write a polynomial in factored form?

Use what you learned about factoring polynomials to complete Exercises 3–5 on page 366.

Writing a polynomial as a product of factors is called *factoring*. When the terms of a polynomial have a common factor, you can factor the polynomial as shown below.

💕 Key Idea

Factoring Polynomials Using the GCF

- **Step 1:** Find the greatest common factor (GCF) of the terms.
- **Step 2:** Use the Distributive Property to write the polynomial as a product of the GCF and its remaining factors.

EXAMPLE 1 Factoring Polynomials

Factor each polynomial.

a. $2x^2 + 18$

Step 1: Find the GCF of the terms.

$$2x^2 = 2 \cdot x \cdot x$$
$$18 = 2 \cdot 3 \cdot 3$$

The GCF is 2.

Step 2: Write the polynomial as a product of the GCF and its remaining factors.

$$2x^{2} + 18 = 2(x^{2}) + 2(9)$$
Factor out GCF.

$$= 2(x^{2} + 9)$$
Distributive Property

b. $15y^3 + 10y^2$

Step 1: Find the GCF of the terms.

$$15y^{3} = 3 \cdot 5 \cdot y \cdot y \cdot y$$
$$10y^{2} = 2 \cdot 5 \cdot y \cdot y = 5y^{2}.$$
The GCF is $5 \cdot y \cdot y = 5y^{2}$.

Step 2: Write the polynomial as a product of the GCF and its remaining factors.

$$15y^{3} + 10y^{2} = 5y^{2}(3y) + 5y^{2}(2)$$
 Factor out GCF.
= $5y^{2}(3y + 2)$ Distributive Property

 $8y^2 - 24y$

On Your Own

Now You're Ready	Factor the polynomial.			
Exercises 6–11	1. $5z^2 + 30$	2.	$3x^2 + 14x$	3.

Study Tip When you factor a polynomial, you undo the multiplication of its factors. To solve an equation using the Zero-Product Property, you may need to first collect the terms on one side of the equation and then factor.

EXAMPLE 2 Solving an Equation by Factoring

Solve $4g^2 = -6g$. $4g^2 = -6g$ $4g^2 + 6g = 0$ 2g(2g + 3) = 0 $2g = 0 \quad or \quad 2g + 3 = 0$ $g = 0 \quad or \quad g = -\frac{3}{2}$

Write equation. Add 6g to each side. Factor the polynomial. Use Zero-Product Property. Solve for g.

: The solutions are g = 0 and $g = -\frac{3}{2}$.

Now You're Ready Exercises 14-22

On Your Own

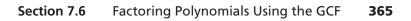
Solve the equation.			
4.	$3x^2 + 21x = 0$	5.	$5z^2 = 5z$

6. $18y = 6y^2$

EXAMPLE 3 Real-Life Application

A female athlete tests her vertical jump by jumping straight into the air. Her height y (in feet) after t seconds can be modeled by $y = -16t^2 + 12t$. How many seconds is she in the air?

She is on the ground when y = 0. So, substitute 0 for y and solve for t.


У	= -1	$6t^2 + 12t$	Write equation.
0	= -1	$6t^2 + 12t$	Substitute 0 for y.
0	= 4t(-4t + 3)	Factor the polynomial.
4t = 0	or	-4t + 3 = 0	Use Zero-Product Property.
<i>t</i> = 0	or	t = 0.75	Solve for <i>t</i> .

She starts the jump at t = 0 and lands when t = 0.75.

So, she is in the air for 0.75 second.

On Your Own

7. WHAT IF? The height of a male athlete testing his vertical jump can be modeled by $y = -16t^2 + 14t$. How many seconds is he in the air?

V V

Vocabulary and Concept Check

- **1. REASONING** What is the greatest common factor of 12y and $30y^2$?
- **2. WRITING** Describe how to factor a polynomial using the greatest common factor.

Practice and Problem Solving

Use algebra tiles to factor the polynomial.

3. 4x + 8

4. $2x^2 + 4x$

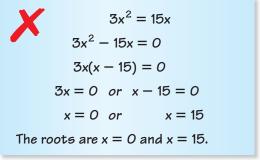
Factor the polynomial.

- 16. $5z^2 + 45z$ 7. $8m^2 + 4m$ 8. $3y^3 9y^2$ 9. $20x^3 + 30x^2$ 10. $4w^3 8w + 12$ 11. $5t^2 + 20t + 50$
 - **12. ERROR ANALYSIS** Describe and correct the error in factoring the polynomial.

$$2x^{2} + 2x = 2(x^{2}) + 2(x) = 2(x^{2} + x)$$

13. INTEREST You deposit \$100 in a savings account that earns simple interest. The balance of the account can be represented by 100 + 100rt, where *r* is the annual interest rate and *t* is the time in years. Factor the polynomial.

Solve the equation.

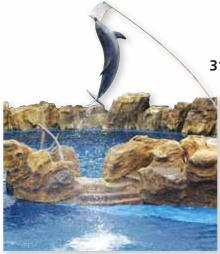

2 14. $2q + 10 = 0$	15. $10x + 15 = 0$
17. $6m^2 + 12m = 0$	18. $3n^2 = 9n$
20. $4a^3 = 44a^2$	21. $6k^3 + 39k^2 = 0$

- **23. ERROR ANALYSIS** Describe and correct the error in solving the equation.
- **24.** AGES Your brother is y years old. Your older cousins are $2y^2$ and 6y years old. The difference between your cousins' ages is zero. Your brother is older than 1 year old. How old is he?

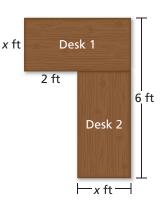
5. $x^2 - 4x$

16.	$4p^2 - p = 0$
19.	$4r^2 = -28r$
22.	$2y^2 = 2\pi y$

Solve the equation.


25. $5b^2 - 20b = b^2$

27. $2s^3 + 15s^2 = 3s^2$


26.
$$5n^2 + 40n = 5n$$

28. $8g^3 - 2g^2 = 2g^3 - 5g^2$

- **29. OPEN-ENDED** Write a binomial whose terms have a GCF of 3*x*.
- **30.** SCHOOL SIGN The area (in square feet) of the school sign can be represented by $15x^2 6x$.
 - **a.** Write an expression that represents the length of the sign.
 - **b.** Describe two ways to find the area of the sign when x = 2.

- **31. DOLPHIN** A dolphin jumps straight into the air during a performance. The dolphin's height *y* (in feet) after *t* seconds can be modeled by $y = -16t^2 + 24t$.
 - **a.** How many seconds is the dolphin in the air?
 - **b.** The dolphin reaches its maximum height after 0.75 second. What is the maximum height of the jump?
- **32.** Modeling Your teacher's work station is made up of two identical desks arranged as shown.
 - **a.** Write an equation in terms of *x* that relates the area of Desk 1 to the area of Desk 2.
 - **b.** What is the value of *x*?
 - **c.** Find the area of the top of your teacher's work station.

Fair Game Review What you learned in previous grades & lessons

Find the product. (Section 7.3)

33. (y+4)(y+6) **34.** (m-2)(m-9) **35.** (2k+1)(2k-3)

36. MULTIPLE CHOICE An African elephant weighs 5,200,000 grams. Write this number in scientific notation. *(Skills Review Handbook)*

(A) 0.52×10^{-7} g

 \bigcirc 52 \times 10⁵ g

(B)
$$5.2 \times 10^{-6}$$
 g
(D) 5.2×10^{6} g