7.4 Speaial Products of Polynomials

Essential Question what re the eaterns in the special products

 $(a+b)(a-b),(a+b)^{2}$, and $(a-b)^{2} ?$
1 ACIIVIJY: Finding a Sum and Difference Pattern

Work with a partner. Six different algebra tiles are shown below.

Write the product of the two binomials shown by the algebra tiles.
a. $(x+2)(x-2)=$ \square
b. $(2 x-1)(2 x+1)=$

Polynomials

In this lesson, you will

- use patterns to multiply polynomials.
Learning Standard A.APR. 1

2 ACTIVIJY: Describing a sum and Difference Pattern

Work with a partner.

a. Describe the pattern for the special product: $(a+b)(a-b)$.
b. Use the pattern you described to find each product. Check your answers using algebra tiles.
i. $(x+3)(x-3)$
ii. $(x-4)(x+4)$
iii. $(3 x+1)(3 x-1)$
iv. $(3 y+4)(3 y-4)$
v. $(2 x-5)(2 x+5)$
vi. $(z+1)(z-1)$

3 ACTIVITY: Finding the Square of a Binomial Pattern

Write the product of the two binomials shown by the algebra tiles.
a. $(x+2)^{2}=$ \qquad

b. $(2 x-1)^{2}=$

4. ACTIV/JY: Describing the Square of a Binomial Pattern

What did the products of the binomials in the previous activity have in common? How does this help in describing the pattern?

Work with a partner.

a. Describe the pattern for the special product: $(a+b)^{2}$.
b. Describe the pattern for the special product: $(a-b)^{2}$.
c. Use the patterns you described to find each product. Check your answers using algebra tiles.
i. $(x+3)^{2}$
ii. $(x-2)^{2}$
iii. $(3 x+1)^{2}$
iv. $(3 y+4)^{2}$
v. $(2 x-5)^{2}$
vi. $(z+1)^{2}$

What is Your Answer?

5. IN YOUR OWN WORDS What are the patterns in the special products $(a+b)(a-b),(a+b)^{2}$, and $(a-b)^{2}$? Use the results of Activities 2 and 4 to write formulas for these special products.

Some pairs of binomials show patterns when multiplied. You can use these patterns to multiply other similar pairs of binomials.

Study Tip

Because multiplication is commutative, the pattern also applies to $(a-b)(a+b)$.

GO Key Idea

Sum and Difference Pattern

Algebra

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Example

$$
\begin{aligned}
(x+3)(x-3) & =x^{2}-3^{2} \\
& =x^{2}-9
\end{aligned}
$$

EXAMPLE (1) Using the Sum and Difference Pattern

Find each product.

a. $(x+7)(x-7)$

$$
\begin{aligned}
(a+b)(a-b) & =a^{2}-b^{2} & & \text { Sum and Difference Pattern } \\
(x+7)(x-7) & =x^{2}-7^{2} & & \text { Use pattern. } \\
& =x^{2}-49 & & \text { Simplify. }
\end{aligned}
$$

Use the FOIL Method.

$$
\begin{aligned}
(3 x & -1)(3 x+1) \\
& =9 x^{2}+3 x-3 x-1 \\
& =9 x^{2}-1
\end{aligned}
$$

b. $(3 x-1)(3 x+1)$

$$
\begin{aligned}
(a-b)(a+b) & =a^{2}-b^{2} & & \text { Sum and Difference Pattern } \\
(3 x-1)(3 x+1) & =(3 x)^{2}-1^{2} & & \text { Use pattern. } \\
& =9 x^{2}-1 & & \text { Simplify. }
\end{aligned}
$$

On Your Own

Find the product.

1. $(x-4)(x+4)$
2. $(b+10)(b-10)$
3. $(2 g+5)(2 g-5)$

(5) Key Idea

Square of a Binomial Pattern

Algebra
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$

Example

$$
\begin{aligned}
(x+3)^{2} & =x^{2}+2(x)(3)+3^{2} \\
& =x^{2}+6 x+9 \\
(x-3)^{2} & =x^{2}-2(x)(3)+3^{2} \\
& =x^{2}-6 x+9
\end{aligned}
$$

Find each product.

a. $(y+1)^{2}$

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} & & \text { Square of a Binomial Pattern } \\
(y+1)^{2} & =y^{2}+2(y)(1)+1^{2} & & \text { Use pattern. } \\
& =y^{2}+2 y+1 & & \text { Simplify. }
\end{aligned}
$$

Check

Use the FOIL Method.

$$
\begin{aligned}
(2 z-3)^{2} & =(2 z-3)(2 z-3) \\
& =4 z^{2}-6 z-6 z+9 \\
& =4 z^{2}-12 z+9
\end{aligned}
$$

b. $(2 z-3)^{2}$

$$
\begin{aligned}
(a-b)^{2} & =a^{2}-2 a b+b^{2} & & \text { Square of a Binomial Pattern } \\
(2 z-3)^{2} & =(2 z)^{2}-2(2 z)(3)+3^{2} & & \text { Use pattern. } \\
& =4 z^{2}-12 z+9 & & \text { Simplify. }
\end{aligned}
$$

EXAMPLE 3 Rea-Life Application

A diagram that models possible gene combinations in offspring is called a Punnett square.

Vocabulary and Concept Check

1. OPEN-ENDED Write two binomials whose product can be found using the sum and difference pattern.
2. WHICH ONE DOESN'T BELONG? Which expression does not belong with the other three? Explain your reasoning.
$(x+1)(x-1)$
$(3 x+2)(3 x-2)$
$(x+2)(x-3)$
$(2 x+5)(2 x-5)$

Practice and Problem Solving

Use algebra tiles to find the product.

3. $(x+6)(x-6)$
4. $(3 y-2)(3 y+2)$
5. $(2 z+2)^{2}$

Find the product.

6. $(x+2)(x-2)$
7. $(g-5)(g+5)$
8. $(z-8)(z+8)$
9. $(b+12)(b-12)$
10. $(2 x+1)(2 x-1)$
11. $(3 x-4)(3 x+4)$
12. $(6 x+7)(6 x-7)$
13. $(9-c)(9+c)$
14. $(8-3 m)(8+3 m)$
15. REASONING Write two binomials whose product is $x^{2}-16$. Explain how you found your answer.

Find the product.
(2) 16. $(b-2)^{2}$
17. $(y+8)^{2}$
18. $(n+6)^{2}$
19. $(d-10)^{2}$
20. $(2 f-1)^{2}$
21. $(5 p+2)^{2}$
22. $(4 b-5)^{2}$
23. $(12-x)^{2}$
24. $(4+7 t)^{2}$

ERROR ANALYSIS Describe and correct the error in finding the product.
25.

26.

$$
\begin{aligned}
(s & +5)(s-5) \\
& =s^{2}+2(s)(5)-5^{2} \\
& =s^{2}+10 s-25
\end{aligned}
$$

27. CONSTRUCTION A contractor extends a house on two sides.
a. The area of the first level of the house after the renovation is represented by $(x+50)^{2}$. Find this product.
b. Use the polynomial in part (a) to find the area of the first level when $x=15$. What is the area of the extension?

Write a polynomial that represents the area of the figure.

29.

Find the product.

30. $\left(x^{2}+1\right)\left(x^{2}-1\right)$
31. $(x+y)(x-y)$
32. $(2 x-y)^{2}$

33. GENETICS In deer, the gene N is for normal coloring and the gene a is for no coloring, or albino. Any gene combination with an N results in normal coloring. The diagram shows the possible gene combinations of an offspring and the resulting colors from parents that both have the gene combination Na .
a. What percent of the possible gene combinations result in normal coloring?
b. The genetic makeup of an offspring can be modeled by $(0.5 N+0.5 a)^{2}$. Use the square of a binomial pattern to model the possible gene combinations of an offspring.
34. VISION Your iris controls the amount of light that enters your eye by changing the size of your pupil.
a. Write a polynomial that represents the area of your pupil. Write your answer in terms of π.
b. The width x of your iris decreases from 4 millimeters to 2 millimeters when you enter a dark room. How many
 times greater is the area of your pupil after entering the room than before entering the room? Explain.
35. Repeated Find $(x+1)^{3}$ and $(x+2)^{3}$. Find a pattern in the terms and use it to write a pattern for the cube of a binomial $(a+b)^{3}$.

Fair Game Review what you learned in previous grades \& lessons

Find the product. (Section 7.3)
36. $(x+4)(x+9)$
37. $(y-7)(y+3)$
38. $(z-10)(z-1)$
39. MULTIPLE CHOICE What is the solution of the linear system? (Section 4.2)
(A) $(-3,-1)$
(B) $(-3,1)$
$y=2 x-5$
(C) $(3,-1)$
(D) $(3,1)$
$3 x-8 y=1$

