Review Key Vocabulary

closed, p. 266
nth root, p. 278
exponential function, p. 286
exponential growth, p. 296
exponential growth function, p. 296
compound interest, p. 297
exponential decay, p. 302
exponential decay function, p. 302
geometric sequence, p. 308
common ratio, p. 308
recursive rule, p. 312

Review Examples and Exercises

(0.1] Properties of Square Roots (pp. 260-267)

Evaluate $\sqrt{b^{2}-4 a c}$ when $a=-2, b=2$, and $c=5$.

$$
\begin{aligned}
\sqrt{b^{2}-4 a c} & =\sqrt{2^{2}-4(-2)(5)} & & \text { Substitute. } \\
& =\sqrt{44} & & \text { Simplify. } \\
& =\sqrt{4 \cdot 11} & & \text { Factor. } \\
& =\sqrt{4} \cdot \sqrt{11} & & \text { Product Property of Square Roots } \\
& =2 \sqrt{11} & & \text { Simplify. }
\end{aligned}
$$

Exercises

Evaluate the expression when $x=3, y=4$, and $z=2$.

1. $\sqrt{x y^{2} z}$
2. $\sqrt{2 z+y}$
3. $\frac{8+\sqrt{x y}}{z}$

6.2 Properties of Exponents (pp. 268-275)

Simplify $\left(\frac{3 x}{4}\right)^{-4}$. Write your answer using only positive exponents.

$$
\begin{aligned}
\left(\frac{3 x}{4}\right)^{-4} & =\frac{(3 x)^{-4}}{4^{-4}} & & \text { Power of a Quotient Property } \\
& =\frac{4^{4}}{(3 x)^{4}} & & \text { Definition of negative exponent } \\
& =\frac{4^{4}}{3^{4} x^{4}} & & \text { Power of a Product Property } \\
& =\frac{256}{81 x^{4}} & & \text { Simplify. }
\end{aligned}
$$

Exercises

Simplify. Write your answer using only positive exponents.
4. $y^{3} \cdot y^{-3}$
5. $\frac{x^{4}}{x^{7}}$
6. $\left(x y^{2}\right)^{3}$
7. $\left(\frac{2 x}{5 y}\right)^{-2}$

(6,3) Radicals and Rational Exponents (pp. 276-281)

Simplify each expression.
a. $\sqrt[3]{512}=\sqrt[3]{8 \cdot 8 \cdot 8}=8 \quad$ Rewrite and simplify.
b. $900^{1 / 2}=\sqrt{900} \quad$ Write the expression in radical form.

$$
\begin{array}{ll}
=\sqrt{30 \cdot 30} & \text { Rewrite. } \\
=30 & \text { Simplify. }
\end{array}
$$

Exercises

Simplify the expression.

8. $\sqrt[3]{8}$
9. $64^{1 / 2}$
10. $625^{3 / 4}$

6.4 Exponential Functions (pp. 284-293)

a. Graph $y=4^{x}$.

Step 1: Make a table of values.

x	-1	0	1	2	3
y	0.25	1	4	16	64

Step 2: Plot the ordered pairs.
Step 3: Draw a smooth curve through the points.

b. Write an exponential function represented by the graph.

Use the graph to make a table of values.

The y-intercept is 2 and the y-values increase by a factor
 of 3 as x increases by 1 .
$\therefore \quad$ So, the exponential function is $y=2(3)^{x}$.

Exercises

11. Graph $y=-2(4)^{x}+3$. Describe the domain and range. Compare the graph to the graph of $y=-2(4)^{x}$.

Write an exponential function represented by the graph or table.
12.

13.

x	0	1	2	3
y	2	1	0.5	0.25

Solve the equation. Check your solution, if possible.
14. $3^{x}=27$
15. $5^{x}=5^{x-2}$
16. $2^{5 x}=8^{2 x-4}$

6.5 Exponential Growth (pp. 294-299)

The enrollment at a high school increases by 4% each year. In 2010, there were 800 students enrolled at the school.
a. Write a function that represents the enrollment y of the high school after \boldsymbol{t} years.

$$
\begin{array}{ll}
y=a(1+r)^{t} & \text { Write exponential growth function. } \\
y=800(1+0.04)^{t} & \text { Substitute } 800 \text { for a and } 0.04 \text { for } r . \\
y=800(1.04)^{t} & \text { Simplify. }
\end{array}
$$

b. How many students will be enrolled at the high school in 2020? The value $t=10$ represents 2020 .

$$
\begin{aligned}
y & =800(1.04)^{t} & & \text { Write exponential growth function. } \\
y & =800(1.04)^{10} & & \text { Substitute } 10 \text { for } t . \\
& \approx 1184 & & \text { Use a calculator. }
\end{aligned}
$$

Exercises

17. PLUMBER A plumber charges $\$ 22$ per hour. The hourly rate increases by 3% each year.
a. Write a function that represents the plumber's hourly rate y (in dollars) after t years.
b. What is the plumber's hourly rate after 8 years?

6.6 Exponential Decay (pp. 300-305)

The table shows the value of a boat over time.

Year, \boldsymbol{t}	0	1	2	3
Value, \boldsymbol{y}	$\$ 6000$	$\$ 4800$	$\$ 3840$	$\$ 3072$

a. Determine whether the table represents an exponential growth function, an exponential decay function, or neither.

\therefore As x increases by $1, y$ is multiplied by 0.8 . So, the table represents an exponential decay function.
b. The boat loses 20% of its value every year. Write a function that represents the value \boldsymbol{y} (in dollars) of the boat after \boldsymbol{t} years.

$$
\begin{aligned}
& y=a(1-r)^{t} \\
& y=6000(1-0.2)^{t}
\end{aligned}
$$

$$
y=6000(0.8)^{t} \quad \text { Simplify. }
$$

c. Graph the function from part (b). Use the graph to estimate the value of the boat after 8 years.

From the graph, you can see that the y-value is about 1000 when $t=8$.
\because So, the value of the boat is about $\$ 1000$ after 8 years.

Write exponential decay function.
Substitute 6000 for a and 0.2 for r.

Value of a Boat

Exercises

Determine whether the table represents an exponential growth function, an exponential decay function, or neither.
18.

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	3	6	12	24

19.

x	1	2	3	4
y	162	108	72	48

20. DISCOUNT The price of a TV is $\$ 1500$. The price decreases by 6% each month. Write and graph a function that represents the price y (in dollars) of the TV after t months. Use the graph to estimate the price of the TV after 1 year.

6.7 Geometric Sequences (pp. 306-315)

a. Write the next three terms of the geometric sequence $2,6,18,54, \ldots$.

Use a table to organize the terms and extend the pattern.

| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | 2 | 6 | 18 | 54 | 162 | 486 | 1458 |

Each term is 3 times the previous term. So, the common ratio is 3 .

Multiply a term by 3 to find the next term.
$\therefore \quad$ The next three terms are 162,486 , and 1458.
b. Graph the geometric sequence $24,12,6,3,1.5, \ldots$. What do you notice? Make a table. Then plot the ordered pairs (n, a_{n}).

Position, \boldsymbol{n}	1	2	3	4	5
Term, $\boldsymbol{a}_{\boldsymbol{n}}$	24	12	6	3	1.5

$\because:$ The points of the graph appear to lie on an exponential curve.

Exercises

Write the next three terms of the geometric sequence. Then graph the sequence.
21. $-3,9,-27,81, \ldots$
22. $48,12,3, \frac{3}{4}, \ldots$

Write an equation for the $\boldsymbol{n} \boldsymbol{t h}$ term of the geometric sequence.
23.

\boldsymbol{n}	1	2	3	4
$a_{\boldsymbol{n}}$	1	4	16	64

24.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	5	-10	20	-40

Write a recursive rule for the sequence.
25. $3,8,13,18,23, \ldots$
26. $3,6,12,24,48, \ldots$

