6.7 Recursively Defined Sequences

In Sections 5.6 and 6.7, you wrote *explicit* equations for sequences. Now, you will write *recursive* equations for sequences. A **recursive rule** gives the beginning term(s) of a sequence and an equation that indicates how any term a_n in the sequence relates to the previous term.

Recursive Equation for an Arithmetic Sequence

 $a_n = a_{n-1} + d$, where *d* is the common difference.

Recursive Equation for a Geometric Sequence

 $a_n = r \cdot a_{n-1}$, where *r* is the common ratio.

EXAMPLE 1 Writing Terms of Recursively Defined Sequences

Write the first six terms of each sequence. Then graph each sequence.

a.	$a_1 = 2, a_n = a_{n-1} + 3$	b. $a_1 = 1, a_n = 3a_{n-1}$
	<i>a</i> ₁ = 2	$a_1 = 1$
	$a_2 = a_1 + 3 = 2 + 3 = 5$	$a_2 = 3a_1 = 3(1) = 3$
	$a_3 = a_2 + 3 = 5 + 3 = 8$	$a_3 = 3a_2 = 3(3) = 9$
	$a_4 = a_3 + 3 = 8 + 3 = 11$	$a_4 = 3a_3 = 3(9) = 27$
	$a_5 = a_4 + 3 = 11 + 3 = 14$	$a_5 = 3a_4 = 3(27) = 81$
	$a_6 = a_5 + 3 = 14 + 3 = 17$	$a_6 = 3a_5 = 3(81) = 243$

Practice

Write the first six terms of the sequence. Then graph the sequence.

15

12

9

6

3

0

2 3 4 5

1. $a_1 = 0, a_n = a_{n-1} - 8$ **2.** $a_1 = -7.5, a_n = a_{n-1} + 2.5$ **3.** $a_1 = -36, a_n = \frac{1}{2}a_{n-1}$ **4.** $a_1 = 0.7, a_n = 10a_{n-1}$

Multi-Language Glossary at BigIdeasMath

EXAMPLE 2 Writing Recursive Rules

Recursive Sequences

In this extension, you willwrite the terms of

- recursively defined sequences.
- write recursive equations for sequences.

Learning Standards F.BF.2 F.IF.3 F.LE.2

Write a recursive rule for each sequence.

a. -30, -18, -6, 6, 18, . . .

Use a table to organize the terms and find the pattern.

Position	1	2	3	4	5
Term	-30	-18	-6	6	18
+ 12 + 12 + 12 + 12					

The sequence is arithmetic with first term -30 and common difference 12.

$a_n = a_{n-1} + d$	Recursive equation (arithmetic)
$a_n = a_{n-1} + 12$	Substitute 12 for <i>d</i> .

So, a recursive rule for the sequence is $a_1 = -30$, $a_n = a_{n-1} + 12$.

b. 500, 100, 20, 4, 0.8, . . .

Use a table to organize the terms and find the pattern.

Position	1	2	3	4	5
Term	500	100	20	4	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

The sequence is geometric with first term 500 and common ratio $\frac{1}{5}$.

 $a_n = r \cdot a_{n-1}$ Recursive equation (geometric) $a_n = \frac{1}{5} a_{n-1}$ Substitute $\frac{1}{5}$ for r.

1 month:

2 feet

So, a recursive rule for the sequence is $a_1 = 500$, $a_n = \frac{1}{5}a_{n-1}$.

2 months:

3.5 feet

Practice

Write a recursive rule for the sequence.

- **5.** 8, 3, -2, -7, -12, ...
- **6.** 1.3, 2.6, 3.9, 5.2, 6.5, ...
- **7.** 4, 20, 100, 500, 2500, . . .
- **8.** 1600, -400, 100, -25, 6.25, . . .
- **9. SUNFLOWERS** Write a recursive rule for the height of the sunflower over time.

3 months:

5 feet

4 months:

6.5 feet

3 Translating Recursive Rules into Explicit Equations EXAMPLE

Write an explicit equation for each recursive rule.

a.
$$a_1 = 25, a_n = a_{n-1} - 10$$

The recursive rule represents an arithmetic sequence with first term 25 and common difference -10.

$a_n = a_1 + (n-1)d$	Equation for an arithmetic sequence
$a_n = 25 + (n-1)(-10)$	Substitute 25 for a_1 and -10 for d .
$a_n = -10n + 35$	Simplify.

b. $a_1 = 19.6, a_n = -0.5a_{n-1}$

The recursive rule represents a geometric sequence with first term 19.6 and common ratio -0.5.

$a_n = a_n$	$a_1 r^{n-1}$
$a_n = 1$	$19.6(-0.5)^{n-1}$

Equation for a geometric sequence Substitute 19.6 for a_1 and -0.5 for r.

Translating Explicit Equations into Recursive Rules EXAMPLE <u>A</u>)

Write a recursive rule for each explicit equation.

a. $a_n = -2n + 3$

The explicit equation represents an arithmetic sequence with first term -2(1) + 3 = 1 and common difference -2.

$a_n = a_{n-1} + d$	Recursive equation (arithmetic)
$a_n = a_{n-1} + (-2)$	Substitute -2 for <i>d</i> .

So, a recursive rule for the sequence is $a_1 = 1$, $a_n = a_{n-1} - 2$.

b. $a_n = -3(2)^{n-1}$

The explicit equation represents a geometric sequence with first term -3 and common ratio 2.

$a_n = r \cdot a_{n-1}$	Recursive equation (geometric)
$a_n = 2a_{n-1}$	Substitute 2 for <i>r</i> .

So, a recursive rule for the sequence is $a_1 = -3$, $a_n = 2a_{n-1}$.

Practice

Write an explicit equation for the recursive rule.

10. $a_1 = -45, a_n = a_{n-1} + 20$ **11.** $a_1 = 13, a_n = -3a_{n-1}$

Write a recursive rule for the explicit equation.

13. $a_n = -2.5(2)^{n-1}$ **12.** $a_n = -n + 1$

You can write recursive rules for sequences that are neither arithmetic nor geometric. One way is to look for patterns in the sums of consecutive terms.

EXAMPLE 5 Writing Recursive Rules for Other Sequences-

Write a recursive rule for the sequence 1, 1, 2, 3, 5, 8, Then write the next 3 terms of the sequence.

The sequence does not have a common difference or a common ratio. Find the sums of consecutive terms.

$a_1 + a_2 = 1 + 1 = 2$	2 is the third term.
$a_2 + a_3 = 1 + 2 = 3$	3 is the fourth term.
$a_3 + a_4 = 2 + 3 = 5$	5 is the fifth term.
$a_4 + a_5 = 3 + 5 = 8$	8 is the sixth term.

So, a recursive equation for the sequence is $a_n = a_{n-2} + a_{n-1}$. Use the equation to find the next three terms.

$a_7 = a_5 + a_6$	$a_8 = a_6 + a_7$	$a_9 = a_7 + a_8$
= 5 + 8	= 8 + 13	= 13 + 21
= 13	= 21	= 34

A recursive rule for the sequence is $a_1 = 1$, $a_2 = 1$, $a_n = a_{n-2} + a_{n-1}$. The next three terms are 13, 21, and 34.

Write a recursive rule for the sequence. Then write the next 3 terms of the sequence.

14. 5, 6, 11, 17, 28,	15. -3, -4, -7, -11, -18,
16. 1, 1, 0, -1, -1, 0, 1, 1,	17. 4, 3, 1, 2, -1, 3, -4,

Use a pattern in the products of consecutive terms to write a recursive rule for the sequence. Then write the next 2 terms of the sequence.

18. 2, 3, 6, 18, 108, . . .

19. -2, 2.5, -5, -12.5, 62.5, ...

20. GEOMETRY Consider squares 1–6 in the diagram.

- **a.** Write a sequence in which each term a_n is the side length of square *n*.
- **b.** What is the name of this sequence? What is the next term of this sequence?
- **c.** Use the term in part (b) to add another square to the diagram and extend the spiral.

The sequence in Example 5 is called the *Fibonacci sequence*. This pattern is naturally occurring in many objects, such as flowers.