Does the table represent a linear or an exponential function? Explain. (Section 6.4)
1.

| $x$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 5 | 10 | 15 | 20 |

2. 

| $x$ | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 5 | 10 | 20 | 40 |

Graph the function. Describe the domain and range. (Section 6.4)
3. $y=5^{x}$
4. $y=-2\left(\frac{1}{6}\right)^{x}$

Solve the equation. Check your solution, if possible. (Section 6.4)
5. $8^{x+2}=64^{4 x+1}$
6. $7^{2 x-6}=49^{3 x-11}$

Determine whether the table represents an exponential growth function, an exponential decay function, or neither. (Section 6.6)

7. | $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 7 | 21 | 63 | 189 |
8. 

| $\boldsymbol{x}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 14,641 | 1331 | 121 | 11 |

Write the next three terms of the geometric sequence. Then graph the sequence. (Section 6.7)
9. $15,-45,135,-405, \ldots$
10. $768,192,48,12, \ldots$

Write a recursive rule for the sequence. (Section 6.7)
11. $5,11,17,23, \ldots$
12. $-14,28,-56,112, \ldots$
13. SAVINGS ACCOUNT You deposit $\$ 2500$ in a savings account that earns $6 \%$ annual interest compounded yearly. (Section 6.5)
a. Write and graph a function that represents the balance $y$ (in dollars) after $t$ years.
b. What is the balance after 5 years?

14. CURRENCY A country's base unit of currency is valued at US\$2. The country's base unit of currency loses about $3.9 \%$ of its value every month. (Section 6.6)
a. Write a function that represents the value $y$ (in U.S. dollars) of the base unit of currency after $t$ months.
b. What is the value of the country's base unit of currency after 1.5 years?

