Exiension
 6.4
 Solying Exponential Equations

To solve an exponential equation of the form $b^{x}=b^{y}$ when $b>0$ and $b \neq 1$, solve the equation $x=y$.

EXAMPLE (1) Solving Exponential Equations

Check

$$
\begin{aligned}
& 4^{x}=2^{x-3} \\
& 4^{-3} \stackrel{?}{=} 2^{-3-3} \\
& \frac{1}{4^{3}} \stackrel{?}{=} \frac{1}{2^{6}} \\
& \frac{1}{64}=\frac{1}{64}
\end{aligned}
$$

Check
$9^{x+2}=27^{x}$
$9^{4+2} \stackrel{?}{=} 27^{4}$
$531,441=531,441$
a. Solve $5^{x}=125$.

$$
\begin{aligned}
5^{x} & =125 & & \text { Write the equation. } \\
5^{x} & =5^{3} & & \text { Rewrite } 125 \text { as } 5^{3} . \\
x & =3 & & \text { Equate the exponents. }
\end{aligned}
$$

b. Solve $4^{x}=2^{x-3}$.

$$
\begin{aligned}
4^{x} & =2^{x-3} & & \text { Write the equation. } \\
\left(2^{2}\right)^{x} & =2^{x-3} & & \text { Rewrite } 4 \text { as } 2^{2} . \\
2^{2 x} & =2^{x-3} & & \text { Power of a Power Property } \\
2 x & =x-3 & & \text { Equate the exponents. } \\
x & =-3 & & \text { Solve for } x .
\end{aligned}
$$

c. Solve $9^{x+2}=27^{x}$.

$$
\begin{aligned}
9^{x+2} & =27^{x} & & \text { Write the equation. } \\
\left(3^{2}\right)^{x+2} & =\left(3^{3}\right)^{x} & & \text { Rewrite } 9 \text { as } 3^{2} \text { and } 27 \text { as } 3^{3} . \\
3^{2 x+4} & =3^{3 x} & & \text { Power of a Power Property } \\
2 x+4 & =3 x & & \text { Equate the exponents. } \\
4 & =x & & \text { Solve for } x .
\end{aligned}
$$

Practice

Solve the equation. Check your solution, if possible.

1. $3^{x}=81$
2. $2^{x}=32$
3. $\frac{1}{16}=4^{x}$
4. $10^{x}=10^{x+1}$
5. $\left(\frac{1}{5}\right)^{x}=\left(\frac{1}{5}\right)^{3 x}$
6. $6^{x-5}=36^{x}$
7. $100^{5 x+2}=1000^{4 x-1}$
8. $32^{1-x}=8^{2 x-2}$
9. $\left(\frac{1}{8}\right)^{x-5}=4^{x}$
10. NUMBER SENSE Explain how you can use mental math to solve the equation $8^{x-4}=1$.
11. REASONING Why does this method for solving $b^{x}=b^{y}$ not work when $b=1$?

Give an example to justify your answer.

Common Core

Exponential Functions In this extension, you will

- solve exponential equations algebraically and graphically.
Learning Standards A.REI. 3
A.REI. 11
F.BF. 3
F.IF.7e
F.LE.1a
F.LE. 2

Use a graphing calculator to solve $\left(\frac{1}{2}\right)^{x-1}=7$.
Step 1: Write a system of equations using each side of the equation.

$$
\begin{array}{ll}
y=\left(\frac{1}{2}\right)^{x-1} & \text { Equation 1 } \\
y=7 & \\
\text { Equation 2 }
\end{array}
$$

Step 2: Enter the equations into your calculator. Then graph the equations in a standard viewing window.

Step 3: Use the intersect feature to find the point of intersection. It is at about ($-1.81,7$).

\therefore So, the solution is $x \approx-1.81$.

Check: Check the solution algebraically.

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{x-1} & =7 & & \text { Write the equation. } \\
\left(\frac{1}{2}\right)^{-1.81-1} & \stackrel{?}{=} 7 & & \text { Substitute }-1.81 \text { for } x . \\
7.01 & \approx 7 & & \text { Use a calculator. }
\end{aligned}
$$

Practice

Use a graphing calculator to solve the equation.
12. $4^{x+3}=6$
13. $2^{x}=1.8$
14. $4=8^{x}$
15. $\left(\frac{3}{4}\right)^{x+2}=10$
16. $2^{-x-3}=3^{x+1}$
17. $5^{x}=-4^{x+4}$

