Essential Qusestion what are the characteristics of an exponential function?

1 ACTIV/JY: Describing an Exponential Function

Work with a partner. The graph below shows estimates of the population of Earth from 5000 b.c. through 1500 A.D. at 500-year intervals.
a. Describe the pattern.
b. Did Earth's population increase by the same amount or the same percent for each 500-year period? Explain.
c. Assume the pattern continued. Estimate Earth's population in 2000.
d. Use the Internet to find Earth's population in 2000. Did the pattern continue? If not, why did the pattern change?

Common Core

Exponential Functions In this lesson, you will

- identify, evaluate, and graph exponential functions.
Learning Standards A.REI. 3
A.REI. 11
F.BF. 3
F.IF.7e
F.LE.1a
F.LE. 2

2000 в.с.
Middle Kingdom in Egypt

2 ACTIVIJY: Modeling an Exponential Function

Math Practice

Calculate

Accurately
How can you check the accuracy of your answers?

1 b.c.
Augustus Caesar controls most of the Mediterranean world. (Use $t=0$ to approximate 1 в.с.)

1000 A.D.
Song Dynasty has about one-fifth of Earth's population.

Work with a partner. Use the following exponential function to complete the table. Compare the results with the data in Activity 1.

$$
P=152(1.406)^{t / 500}
$$

Year	t	Population from Activity 1	P
5000 в.c.	-5000		
4500 в.с.	-4500		
4000 b.c.	-4000		
3500 в.с.	-3500		
3000 b.c.	-3000		
2500 в.c.	-2500		
2000 b.c.	-2000		
1500 в.с.	-1500		
1000 в.с.	-1000		
500 в.c.	-500		
1 в.c.	0		
500 A.D.	500		
1000 A.D.	1000		
1500 A.D.	1500		

What Is Your Answer?

3. IN YOUR OWN WORDS What are the characteristics of an exponential function?
4. Sketch the graph of each exponential function. Does the function match the characteristics you described in Question 3? Explain.
a. $y=2^{x}$
b. $y=2(3)^{x}$
c. $y=3(1.5)^{x}$

Key Vocabulary 4) exponential function, p. 286

A function of the form $y=a b^{x}$, where $a \neq 0, b \neq 1$, and $b>0$ is an exponential function. The exponential function $y=a b^{x}$ is a nonlinear function that changes by equal factors over equal intervals.

4 Identifying Functions
Does each table represent a linear or an exponential function? Explain.
a.

\because As x increase by 1 , y increases by 2 . The rate of change is constant. So, the function is linear.
b.

\therefore As x increases by $1, y$ is multiplied by 2 . So, the function is exponential.

EXAMPLE
 2 Evaluating Exponential Functions

Evaluate each function for the given value of \boldsymbol{x}.
a. $y=-2(5)^{x} ; x=3$
b. $y=3(0.5)^{x} ; x=-2$
$y=-2(5)^{x}$
Write the function.
$y=3(0.5)^{x}$
$=-2(5)^{3} \quad$ Substitute for x
$=3(0.5)^{-2}$
$=-2(125)$
Evaluate the power.
$=3(4)$
$=-250$
Multiply.
$=12$

On Your Own

Now You're Ready
 Exercises 6-15

Does the table represent a linear or an exponential function? Explain.
1.

x	0	1	2	3
y	8	4	2	1

2.

x	y
-4	1
0	0
4	-1
8	-2

Evaluate the function when $x=-2,0$, and $\frac{1}{2}$.
3. $y=2(9)^{x}$
4. $y=1.5(2)^{x}$

EXAMPLE

Study Tip

In Example 3, you can substitute any value for x. So, the domain is all real numbers.

3. Graphing an Exponential Function

Graph $y=2^{x}$. Describe the domain and range.
Step 1: Make a table of values.

\boldsymbol{x}	-2	-1	0	1	2	3
\boldsymbol{y}	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

Step 2: Plot the ordered pairs.
Step 3: Draw a smooth curve through
 the points.
\therefore From the graph, you can see that the domain is all real numbers and the range is all positive real numbers.

EXAMPLE

4 Graphing a Vertical Iranslation

Graph $y=2^{x}+3$. Describe the domain and range. Compare the graph to the graph of $y=2^{x}$.

Step 1: Make a table of values.

\boldsymbol{x}	-2	-1	0	1	2	3
\boldsymbol{y}	$\frac{13}{4}$	$\frac{7}{2}$	4	5	7	11

Step 2: Plot the ordered pairs.
Step 3: Draw a smooth curve through the points.
\therefore From the graph, you can see that the
 domain is all real numbers and the range is all real numbers greater than 3 . The graph of $y=2^{x}+3$ is a translation 3 units up of the graph of $y=2^{x}$.

On Your Own

Now You're Ready
Exercises 21-23
and 27-29

Graph the function. Describe the domain and range.
5. $y=3^{x}$
6. $y=\left(\frac{1}{2}\right)^{x}$
7. $y=-2\left(\frac{1}{4}\right)^{x}$
8. Graph $y=\left(\frac{1}{2}\right)^{x}-2$. Describe the domain and range. Compare the graph to the graph of $y=\left(\frac{1}{2}\right)^{x}$.

Study Tip

To find the y-intercept of the graph of $y=a b^{x}$, substitute 0 for x.

$$
\begin{aligned}
& y=a b^{0} \\
& y=a(1) \\
& y=a
\end{aligned}
$$

So, the y-intercept is a.

For an exponential function of the form $y=a b^{x}$, the y-values change by a factor of b as x increases by 1 . Also notice that a is the y-intercept.

$$
y=2(5)^{x}
$$

EXAMPLE

5 Real-Life Application

The graph represents a bacteria population y after x days.
a. Write an exponential function that represents the population.

Use the graph to make a table of values.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	$\overbrace{2}$	12	48	192	768

The y-intercept is 3 and the y-values increase by a factor of 4 as x increases by 1 .
\therefore So, the population can be modeled by $y=3(4)^{x}$.
b. Find the population after 12 hours and after 5 days.

Population after 12 hours
Population after 5 days

$$
\begin{aligned}
& \begin{array}{|c|c|}
\hline 12 \text { hours }=\frac{1}{2} \text { day } \begin{array}{r}
y=3(4)^{x} \\
\\
=3(4)^{1 / 2}
\end{array}
\end{array} \\
& =3(2) \quad \text { Evaluate the power. } \\
& =6 \quad \text { Multiply }=3072 \\
& y=3(4)^{x} \\
& =3(4)^{5} \\
& =3(1024)
\end{aligned}
$$

\therefore There are 6 bacteria after 12 hours and 3072 bacteria after 5 days.

On Your Own

9. A bacteria population y after x days can be represented by an exponential function whose graph passes through $(0,100)$ and $(1,200)$.
a. Write a function that represents the population.
b. Find the population after 6 days. Does this bacteria population grow faster than the bacteria population in Example 5? Explain.

Vocabulary and Concept Check

1. VOCABULARY Describe how linear and exponential functions change over equal intervals.
2. OPEN-ENDED Sketch an increasing exponential function whose graph has a y-intercept of 2 .
3. WHICH ONE DOESN'T BELONG? Which equation does not belong with the other three? Explain your reasoning.
$y=3^{x}$
$f(x)=2(4)^{x}$
$f(x)=(-3)^{x}$
$y=5(3)^{x}$

Practice and Problem Solving

Sketch the graph of the exponential function.
4. $y=4^{x}$
5. $y=2(2)^{x}$

Does the table represent a linear or an exponential function? Explain.
(1)
6.

x	y
0	-2
1	0
2	2
3	4

7.

\boldsymbol{x}	\boldsymbol{y}
1	6
2	12
3	24
4	48

8.

x	-1	0	1	2
y	0.25	1	4	16

9.

x	-3	0	3	6
y	10	1	-8	-17

Evaluate the function for the given value of \boldsymbol{x}.
10. $y=3^{x} ; x=2$
11. $f(x)=3(2)^{x} ; x=-1$
12. $y=-4(5)^{x} ; x=2$
13. $f(x)=0.5^{x} ; x=-3$
14. $f(x)=\frac{1}{3}(6)^{x} ; x=3$
15. $y=\frac{1}{4}(4)^{x} ; x=\frac{3}{2}$
16. ERROR ANALYSIS Describe and correct the error in evaluating the function.
17. CALCULATOR You graph an exponential function on a calculator. You zoom in repeatedly at 25% of the screen size. The function $y=0.25^{x}$ represents the percent (in decimal form) of the original screen

$$
\begin{aligned}
g(x) & =6(0.5)^{x} ; x=-2 \\
g(-2) & =6(0.5)^{-2} \\
& =3^{-2} \\
& =\frac{1}{9}
\end{aligned}
$$ display that you see, where x is the number of times you zoom in. You zoom in twice. What percent of the original screen do you see?

Match the function with its graph.
18. $f(x)=-3(4)^{x}$
19. $y=2(0.5)^{x}$
20. $y=4(1.5)^{x}$
A.

B.

C.

Graph the function. Describe the domain and range.

(3)

21. $y=9^{x}$
22. $f(x)=-7^{x}$
23. $f(x)=4\left(\frac{1}{4}\right)^{x}$
24. LOGIC Describe the graph of $y=a(2)^{x}$ when a is (a) positive and (b) negative. (c) How does the graph change as a changes?
25. NUMBER SENSE Consider the graph of $f(x)=2(b)^{x}$. How do the graphs differ when $b>1$ and $0<b<1$?

26. COYOTES A population y of coyotes in a national park triples every 20 years. The function $y=15(3)^{x}$ represents the population, where x is the number of 20-year periods.
a. Graph the function. Describe the domain and range.
b. Find and interpret the y-intercept.
c. How many coyotes are in the national park after 20 years?

Graph the function. Describe the domain and range. Compare the graph to the graph of $y=3^{x}$.
(4)
27. $y=3^{x}-1$
28. $y=3^{x}+3$
29. $y=3^{x}-\frac{1}{2}$
30. REASONING Graph the function $f(x)=-2^{x}$. Then graph $g(x)=-2^{x}-3$.
a. Describe the domain and range of each function.
b. Find the y-intercept of the graph of each function.
c. How are the y-intercept, domain, and range affected by the translation?
31. REASONING When does an exponential function intersect the x-axis? Give an example to justify your answer.

Given $g(x)=0.25^{x}-1$, find the value of \boldsymbol{k} so that the graph is $g(x)+\boldsymbol{k}$.
32.

33.

34.

35. REASONING Graph $g(x)=4^{x+2}$. Compare the graph to the graph of $f(x)=4^{x}$.

Write an exponential function represented by the graph or table.
(5) 36.

38.

x	0	1	2	3
y	2	8	32	128

40. ART GALLERY The graph represents the number y of visitors to a new art gallery after x months.
a. Write an exponential function that represents this situation.
b. Approximate the number of visitors after 5 months.
41. SALES A sales report shows that 3300 gas grills were purchased from a chain of hardware stores last year. The store expects grill sales to increase 6% each year. About
how many grills does the store expect to sell in year 6 ? store expects grill sales to increase 6% each year. About
how many grills does the store expect to sell in year 6 ? Use an equation to justify your answer.
42.

39.

x	0	1	2	3
y	-3	-15	-75	-375

42. Structure The graph of g is a translation 4 units up and 3 units right of the graph of $f(x)=2^{x}$. Write an equation for g.

Fair Game Review what you learned in previous grades \& lessons

Write the percent as a decimal. (Skills Review Handbook)
43. 23%
44. 3%
45. 150%
46. MULTIPLE CHOICE Which of the following is equivalent to $100(0.95)$? (Skills Review Handbook)
(A) 0.95
(B) 9.5
(C) 95
(D) 950

