Review Key Vocabulary

function, *p. 204* domain, *p. 204* range, *p. 204* independent variable, *p. 204* dependent variable, *p. 204* relation, *p. 208* Vertical Line Test, *p. 209* discrete domain, *p. 212* continuous domain, *p. 212* linear function, *p. 218* function notation, *p. 226* piecewise function, *p. 232*

step function, *p. 233* absolute value function, *p. 234* nonlinear function, *p. 238* sequence, *p. 244* term, *p. 244* arithmetic sequence, *p. 244* common difference, *p. 244*

3 × y

1

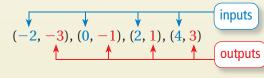
 $2 \ 3 \ 4 \ x$

2

1

2

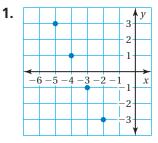
3

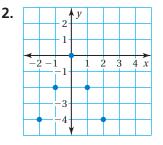

-2 - 1

Review Examples and Exercises

5.1 Domain and Range of a Function (pp. 202–209)

Find the domain and range of the function represented by the graph.

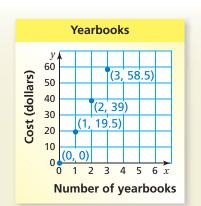

Write the ordered pairs. Identify the inputs and outputs.



→ The domain is -2, 0, 2, and 4. The range is -3, -1, 1, and 3.

Exercises

Find the domain and range of the function represented by the graph.


5.2

Discrete and Continuous Domains (pp. 210–215)

A yearbook costs \$19.50. The graph shows the cost y of x yearbooks. Is the domain discrete or continuous?

Because you cannot buy part of a yearbook, the graph consists of individual points.

• So, the domain is discrete.

Exercises

Graph the function. Is the domain discrete or continuous?

3.	Hours, x	0	1	2	3	4	4.	Stamps, x	20	40	60	80	100	
	Miles, y	0	4	8	12	16		Cost, y	8.4	16.8	25.2	33.6	42	

5.3 Linear Function Patterns (pp. 216–221)

Use the graph to write a linear function that relates *y* to *x*.

The points lie on a line. Find the slope and *y*-intercept of the line.

slope = $\frac{\text{change in } y}{\text{change in } x} = \frac{3-1}{2-1} = \frac{2}{1} = 2$

Because the line crosses the *y*-axis at (0, -1), the *y*-intercept is -1.

So, the linear function is y = 2x - 1.

	3	y		(2,	3)
	-2-				
	- 1 -		(1,	1)	
-	-				
-3 -2 -	1		1 2	23	3x
	-2	(0,		1)	
	2				
(-1, -3)	1	r			

Exercises

Use the graph or table to write a linear function that relates *y* to *x*.

5.						,	y			
						-4				
						-2				
						_1				
						1				
	-6 -	-5 -4	4 – 3	3 - 2	2 - 1	-1-		1 2	23	3x
						٦,	r			

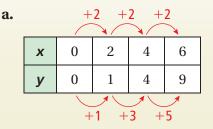
6.	x	-2	0	2	4
	у	-7	-7	-7	-7

5.4 Function Notation (pp. 224–235)

Evaluate f(x) = 3x - 20 when x = 4.

f(x) = 3x - 20	Write the function.
f(4) = 3(4) - 20	Substitute 4 for <i>x</i> .
= -8	Simplify.

Exercises


Evaluate the function when x = -5, 0, and 2.

- **7.** f(x) = 5x + 12 **8.** g(x) = -1.5x 1 **9.** h(x) = 7 3x
- **10.** Compare the graph of f(x) = -3x 1 to the graph of g(x) = -3x.
- **11.** Compare the graph of y = |x| + 1 to the graph of y = |x|.

5.5 Comparing Linear and Nonlinear Functions (pp. 236–241)

b.

Does the table represent a *linear* or *nonlinear* function? Explain.

+5+5 +50 5 X 10 15 50 40 30 20 У -10 -10 -10

As *x* increases by 2, *y* increases by different amounts. The rate of change is *not* constant. So, the function is nonlinear.

As *x* increases by 5, *y* decreases by 10. The rate of change is constant. So, the function is linear.

Exercises

Does the table represent a *linear* or *nonlinear* function? Explain.

12.	x	3	6	9	12
	у	1	10	19	28

13.	x	1	3	5	7
	у	3	1	1	3

5.6

Arithmetic Sequences (pp. 242–249)

Write an equation for the *n*th term of the arithmetic sequence $-3, -5, -7, -9, \dots$ Then find a_{20} .

The first term is -3 and the common difference is -2.

$a_n = a_1 + (n-1)d$	Equation for an arithmetic sequence
$a_n = -3 + (n-1)(-2)$	Substitute -3 for a_1 and -2 for d .
$a_n = -2n - 1$	Simplify.

Use the equation to find the 20th term.

$a_{20} = -2(20) - 1$	Substitute 20 for <i>n</i> .
= -41	Simplify.

Exercises

Write an equation for the *n*th term of the arithmetic sequence. Then find a_{30} .

14. 11, 10, 9, 8, ... **15.** 6, 12, 18, 24, ... **16.** -9, -7, -5, -3, ...