4 Shapier Reviem

Review Key Vocabulary

system of linear equations, p. 156
solution of a system of linear equations, p. 156
system of linear inequalities, p. 186
solution of a system of linear inequalities, p. 186
graph of a system of linear inequalities, p. 186

Review Examples and Exercises

401 Solving Systems of Linear Equations by Graphing (pp. 154-159)

Solve the system by graphing. $\quad \boldsymbol{y}=-2 \boldsymbol{x} \quad$ Equation 1

$$
y=3 x+5 \quad \text { Equation } 2
$$

Step 1: Graph each equation.
Step 2: Estimate the point of intersection. The graphs appear to intersect at ($-1,2$).

Step 3: Check the point from Step 2.

$$
\begin{array}{ll}
y=-2 x & y=3 x+5 \\
2 \stackrel{?}{=}-2(-1) & 2 \stackrel{?}{=} 3(-1)+5 \\
2=2
\end{array}
$$

\therefore The solution is $(-1,2)$.

Exercises

Solve the system of linear equations by graphing.

1. $y=2 x-3$
$y=x+2$
2. $y=-x+4$
$x+3 y=0$
3. $x-y=-2$
$2 x-3 y=-2$

42 Solving Systems of Linear Equations by Substitution (pp. 160-165)

Solve the system by substitution. $\boldsymbol{x}=\mathbf{1}+\boldsymbol{y} \quad$ Equation 1

$$
x+3 y=13 \quad \text { Equation } 2
$$

Step 1: Equation 1 is already solved for x.
Step 2: Substitute $1+y$ for x in Equation 2.

$$
\begin{aligned}
1+y+3 y & =13 & & \text { Substitute } 1+y \text { for } x . \\
y & =3 & & \text { Solve for } y .
\end{aligned}
$$

Step 3: Substituting 3 for y in Equation 1 gives $x=4$.
\therefore The solution is $(4,3)$.

Exercises

Solve the system of linear equations by substitution. Check your solution.
4. $y=-3 x-7$
5. $\frac{1}{2} x+y=-4$
$y=x+9$
$y=2 x+16$
6. $-x+5 y=28$
$x+3 y=20$

433 Solving Systems of Linear Equations by Elimination (pp. 168-175)

You have a total of 5 quarters and dimes in your pocket. The value of the coins is $\$ 0.80$. Write and solve a system of linear equations to find the number x of dimes and the number y of quarters in your pocket.

Use a verbal model to write a system of linear equations.

$$
\begin{array}{ll}
& \begin{array}{c}
\text { Number of } \\
\text { dimes, } x
\end{array}
\end{array}+\begin{gathered}
\text { Number of } \\
\text { quarters, } y
\end{gathered}=\begin{gathered}
\text { Number } \\
\text { of coins }
\end{gathered}
$$

The system is $x+y=5$ and $0.1 x+0.25 y=0.8$.
Step 1: Multiply Equation 2 by 10.

$$
\begin{array}{lll}
x+y=5 & x+y=5 & \text { Equation 1 } \\
0.1 x+0.25 y=0.8 & \text { Multiply by 10. } & x+2.5 y=8
\end{array} \text { Revised Equation 2 }
$$

Step 2: Subtract the equations.

$$
\begin{aligned}
x+y & =5 & & \text { Equation 1 } \\
x+2.5 y & =8 & & \text { Revised Equation } 2 \\
\hline-1.5 y & =-3 & & \text { Subtract the equations. }
\end{aligned}
$$

Step 3: Solving the equation $-1.5 y=-3$ gives $y=2$.
Step 4: Substitute 2 for y in one of the original equations and solve for x.

$$
\begin{aligned}
x+y & =5 \\
x+2 & =5 \\
x & =3
\end{aligned}
$$

Equation 1
Substitute 2 for y.
Subtract 2 from each side.
\therefore So, you have 3 dimes and 2 quarters in your pocket.

Exercises

7. GIFT BASKET A gift basket that contains jars of jam and packages of bread mix costs $\$ 45$. There are 8 items in the basket. Jars of jam cost $\$ 6$ each and packages of bread mix cost $\$ 5$ each. Write and solve a system of linear equations to find the number of jars of jam and the number of packages of bread mix in the gift basket.

40.4) Solving Special Systems of Linear Equations (pp. 176-183)

Solve the system. $\quad \boldsymbol{y}=-\mathbf{5 x} \boldsymbol{x} \mathbf{8} \quad$ Equation 1

$$
y=-5 x+4 \quad \text { Equation } 2
$$

Solve by substitution. Substitute $-5 x+4$ for y in Equation 1 .

$$
\begin{aligned}
y & =-5 x-8 & & \text { Equation } 1 \\
-5 x+4 & =-5 x-8 & & \text { Substitute }-5 x+4 \text { for } y . \\
4 & \neq-8 \quad X & & \text { Add } 5 x \text { to each side. }
\end{aligned}
$$

\therefore The equation $4=-8$ is never true. So, the system of linear equations has no solution.

Exercises

Solve the system of linear equations. Check your solution.
8. $x+2 y=-5$
$x-2 y=-5$
9. $3 x-2 y=1$
$9 x-6 y=3$
10. $8 x-2 y=16$
$-4 x+y=8$
11. Use a graph to solve $2 x-9=7 x+11$. Check your solution.

Check

Verify that $(0,-3)$ is a solution of each inequality.

$$
\begin{array}{rlrl}
\text { Inequality } 1 & & \text { Inequality 2 } \\
y & <x-2 & y & \geq 2 x-4 \\
-3 & \stackrel{?}{<} 0-2 & -3 & \stackrel{?}{\geq} 2(0)-4 \\
-3 & <-2 \Omega & -3 & \geq-4
\end{array}
$$

Step 1: Graph each inequality.
Step 2: Find the intersection of the half-planes. One solution is $(0,-3)$.

The solution is the purple shaded region.

Exercises

Graph the system of linear inequalities.

12. $y \leq x-3$
$y \geq x+1$

$$
\text { 13. } \begin{aligned}
y & >-2 x+3 \\
y & \geq \frac{1}{4} x-1
\end{aligned}
$$

14. $\begin{array}{r}x+2 y>4 \\ 2 x+y<4\end{array}$
