Essential Question How can you use a coordinate plane to solve problems involving linear inequalities?

ACTIVITY: Graphing Inequalities

Work with a partner.

- **a.** Graph y = x + 1 in a coordinate plane.
- **b.** Choose three points that lie above the graph of y = x + 1. Substitute the values of x and y of each point in the inequality y > x + 1. If the substitutions result in true statements, plot the points on the graph.

- **c.** Choose three points that lie below the graph of y = x + 1. Substitute the values of x and y of each point in the inequality y > x + 1. If the substitutions result in true statements, plot the points on the graph.
- **d.** To graph y > x + 1, would you choose points above or below y = x + 1?
- e. Choose a point that lies on the graph of y = x + 1. Substitute the values of x and y in the inequality y > x + 1. What do you notice? Do you think the graph of y > x + 1 includes the points that lie on the graph of y = x + 1? Explain your reasoning.
- **f.** Explain how you could change the inequality so that it includes the points that lie on the graph of y = x + 1.

Graphing Inequalities

In this lesson, you willgraph linear

inequalities in two variables. Learning Standard A.REI.12

ing Standard

Work with a partner. The graph of a linear inequality in two variables shows all the solutions of the inequality in a coordinate plane. An ordered pair (x, y) is a solution of an inequality if the inequality is true when the values of x and y are substituted in the inequality.

- **a.** Write an equation for the graph of the dashed blue line.
- **b.** The solutions of an inequality are represented by the shaded region. In words, describe the solutions of the inequality.
- **c.** Write an inequality for the graph. Which inequality symbol did you use? Explain your reasoning.

V

3 4 x

2

4

3

2

1

0

2

-4 -3 -2

EXAMPLE: Using a Graphing Calculator

- Use a graphing calculator to graph $y \ge \frac{1}{4}x 3$.
- **a.** Enter the equation $y = \frac{1}{4}x 3$ into your calculator.

Plot1 Plot2 Plot3	
NY18(1/4)X-3	
NY2=	
NY3=	
<Υ 4 =	
×Ύs=	
<Ϋ́6=	
×Ϋ7=	

b. The inequality contains the symbol \geq . So, the region to be shaded is above the graph of $y = \frac{1}{4}x - 3$. Adjust your graphing calculator so that the region above the graph will be shaded.

c. Graph $y \ge \frac{1}{4}x - 3$ on your calculator.

Some graphing calculators always use a solid line when graphing inequalities. In this case, you will have to decide whether the line should be dashed or solid.

-What Is Your Answer?

4. Use a graphing calculator to graph each inequality in a standard viewing window.

a. y > x + 5 **b.** $y \le -\frac{1}{2}x + 1$ **c.** $y \ge -x - 4$

5. IN YOUR OWN WORDS How can you use a coordinate plane to solve problems involving linear inequalities? Give an example of a real-life problem that can be represented by an inequality in two variables.

Use what you learned about writing and graphing inequalities to complete Exercises 8–10 on page 141.

3.5 Lesson

2x + y < -3; (-1, 9) 2x + y < -3 $2(-1) + 9 \stackrel{?}{<} -3$ 7 < -3 XWrite the inequality.
Substitute -1 for x and 9 for y.
Simplify. 7 is not less than -3.

So, (-1, 9) is *not* a solution of the inequality.

b. $x - 3y \ge 8$; (2, -2)	
$x - 3y \ge 8$	Write the inequality.
$2-3(-2) \stackrel{?}{\geq} 8$	Substitute 2 for x and -2 for y.
8 ≥ 8	Simplify. 8 is equal to 8.

So, (2, -2) is a solution of the inequality.

On Your Own

Tell whether the ordered pair is a solution of the inequality.

1. x + y > 0; (-2, 2)2. $4x - y \ge 5; (0, 0)$ 3. $5x - 2y \le -1; (-4, -1)$ 4. -2x - 3y < 15; (5, -7)

Reading

A dashed boundary line means that points on the line are *not* solutions. A solid boundary line means that points on the line are solutions. The **graph of a linear inequality** in two variables shows all of the solutions of the inequality in a coordinate plane.

All solutions of y < 2xlie on one side of the boundary line y = 2x.

The boundary line divides the coordinate plane into two **half-planes**. The shaded half-plane is the graph of y < 2x.

Graphing a Linear Inequality in Two Variables

- **Step 1** Graph the boundary line for the inequality. Use a dashed line for < or >. Use a solid line for \leq or \geq .
- **Step 2** Test a point that is not on the boundary line to determine if it is a solution of the inequality.
- **Step 3** If the test point is a solution, shade the half-plane that contains the point. If the test point is *not* a solution, shade the half-plane that does *not* contain the point.

It is convenient to use the origin as a test point because it is easily substituted. However, you must choose a different test point if the origin is on the boundary line.

EXAMPLE 2

Now You're Ready

Exercises 32–34

Graphing Linear Inequalities in One Variable

a. Graph $y \leq 2$ in a coordinate plane.

Step 1: Graph y = 2. Use a solid line because the inequality symbol is \leq .

Step 2: Test (0, 0).

Write the inequality.

Step 3: Because (0, 0) is a solution, shade the half-plane that contains (0, 0).

b. Graph x > 1 in a coordinate plane.

x > 1

Step 1: Graph x = 1. Use a dashed line because the inequality symbol is >.

Step 2: Test (0, 0).

Write the inequality.

Substitute.

Step 3: Because (0, 0) is *not* a solution, shade the half-plane that does *not* contain (0, 0).

0 ≯ 1 ×

	,	y				
	-4-					
	-3-					
	-2-					
	_ 1 .					
	1					
(0,	0)		ć	2 3	3 4	$\frac{1}{x}$
	١					

On Your Own

Graph the inequality in a coordinate plane.

5. $y > -1$	6.	$y \ge -5$
7. $x \le -4$	8.	3.5 > x

Graphing Linear Inequalities in Two Variables EXAMPLE 3

Graph -x + 2y > 2 in a coordinate plane.

Step 1: Graph
$$-x + 2y = 2$$
, or $y = \frac{1}{2}x + 1$.

Use a dashed line because the inequality symbol is >.

Step 2: Test (0, 0).

Step 3: Because (0, 0) is *not* a solution, shade the half-plane that does *not* contain (0, 0).

Real-Life Application EXAMPLE Д

3

You can spend at most \$10 on grapes and apples for a fruit salad. Grapes cost \$2.50 per pound and apples cost \$1 per pound. Write and graph an inequality for the amounts of grapes and apples you can buy. Identify and interpret two solutions of the inequality.

Step 3: Because (0, 0) is a solution, shade the half-plane that contains (0, 0).

Two possible solutions are (1, 6) and (2, 5). So, you can buy 1 pound of grapes and 6 pounds of apples, or 2 pounds of grapes and 5 pounds of apples.

On Your Own

Graph the inequality in a coordinate plane.

9. $x + y \le -4$ 10. $x - 2y < 0$	11.	$2x + 2y \ge 3$
--	-----	-----------------

2 3 4 5 6 x

Now You're Ready

Exercises 35-40

5

4

3 2

1 0

0 1 -1

Check

3.5 **Exercises**

-3 -2 1 0 -2 2 3x

Practice and Problem Solving

In words, describe the solutions of the inequality.

8. y > x - 1

10. y < x - 2

Tell whether the ordered pair is a solution of the inequality.

11. x + y < 7; (6, -1) **12.** $2x - y \le 0$; (-2, -5)**13.** $x + 3y \ge -2$; (-4, -2)**14.** 3x + 2y > -6; (0, 0) **16.** $3x - 5y \ge -8$; (-1, 1)**15.** $-6x + 4\nu \le 5$; (3, -5) **17.** -x - 6y > 12; (-8, 2)**18.** -4x - 8y < -15; (-6, 3)

9. $y \ge -x + 5$

Tell whether the ordered pair is a solution of the inequality whose graph is shown.

- **19.** (0, 4) **20.** (0, 0)
- **21.** (-1, -2) **22.** (-1, 3)
- **24.** (-2, -1) **23.** (3, 3)
- 3 2 3x
- 25. FABRIC You can spend at most \$60 on lace. Cotton lace is \$2 per yard and linen lace is \$3 per yard. Write an inequality for the amounts of lace you can buy. Can you buy 12 yards of cotton lace and 15 yards of linen lace? Explain.

In Exercises 26–28, use the inequality 2x + y < -1.

- **26.** Write the equation of the boundary line in slope-intercept form.
- **27.** Tell whether you would use a solid line or a dashed line to graph the boundary line. Then graph the boundary line.
- **28.** Test the point (0, 0) in the inequality. Is the test point a solution? If so, shade the half-plane that contains the point. If not, shade the half-plane that does *not* contain the point.

Match the inequality with its graph.

Graph the inequality in a coordinate plane.

2 32. <i>y</i> < 5	33. $x \ge -3$	34. <i>x</i> < 2
35. $y \le 3x - 1$	36. $-2x + y > -4$	37. $3x - 2y \ge 0$
38. $5x - 2y \le 6$	39. $2x - y < -3$	40. $-x + 4y > -2$

ERROR ANALYSIS Describe and correct the error in graphing the inequality.

41. y < -x + 1

42. $y \le 3x - 2$

- **43. CRITICAL THINKING** When graphing a linear inequality in two variables, why must you choose a test point that is *not* on the boundary line?
- **44. MODELING** In order for the drama club to cover the expenses of producing a play, at least \$1500 worth of tickets must be sold.
 - **a.** Use a model to write an inequality that represents this situation.
 - **b.** Graph the inequality.
 - **c.** Eighty adults and 110 students attend the play. Does the drama club cover its expenses? Explain.

Tell whether the ordered pair is a solution of the inequality.

45. $y < \frac{1}{3}x + \frac{1}{4}$; (6, 2)**46.** $2.5 - y \le 1.8x$; (0.5, 1.5)**47.** $0.2x + 1.6y \ge -1$; (10, -2.2)**48.** $2x - \frac{2}{3}y > -5$; $\left(\frac{3}{4}, 4\right)$

Write an inequality that represents the graph.

- **52. REASONING** How many solutions does the inequality $2x + y \ge 5$ have?
- **53. PROBLEM SOLVING** After buying your admission ticket, you have \$9 to spend at the movies. Arcade games cost \$0.75 per game and soft drinks cost \$2.25.
 - **a.** Write and graph an inequality that represents the numbers of arcade games you can play and soft drinks you can buy.
 - **b.** Identify and interpret two solutions of the inequality.
- **54.** Large boxes weigh 75 pounds and small boxes weigh 40 pounds.
 - **a.** Write and graph an inequality that represents the numbers of large and small boxes a 200-pound delivery person can take on the elevator.
 - **b.** Identify and interpret two solutions of the inequality that are on the boundary line.
 - **c.** Explain why the solutions in part (b) might not be practical in real life.

-19 -18 -17 -16 -15 -14 -13

Fair Game Review What you learned in previous grades & lessons

Multiply. (Skills Review Handbook)

(**C**)

55. 4 • 4 • 4 • 4 **56.** (-2) • (-2) • (-2) **57.** 3 • 3 • 3 • 3 • 3

-19 -18 -17 -16 -15 -14 -13