

Key Vocabulary ()) compound inequality, *p. 132* absolute value inequality, *p. 134* A **compound inequality** is an inequality formed by joining two inequalities with the word "and" or the word "or."

Solutions of a compound inequality with "and" consist of numbers that are solutions of both inequalities. Solutions of a compound inequality with "or" consist of numbers that are solutions of at least one of the inequalities.

EXAMPLE

Writing and Graphing Compound Inequalities

Write each word sentence as an inequality. Graph the inequality.

a. A number x is greater than -8 and less than or equal to 4.

b. A number *y* is at most 0 or at least 7. A number *y* is at most 0 or at least 7.

Practice

Study Tip

you can write

 $-8 < x \le 4$.

A compound inequality with "and" can be

written as a single inequality. For example,

x > -8 and $x \le 4$ as

In Exercises 1–4, write the word sentence as an inequality. Graph the inequality.

- 1. A number *k* is more than 3 and less than 9.
- 2. A number *n* is greater than or equal to 6 and no more than 11.
- **3.** A number w is fewer than -10 or no less than -6.
- **4.** A number *z* is less than or equal to -5 or more than 4.
- 5. Write an inequality to describe the graph.
- **6.** The world's longest human life span is 122 years. Write and graph a compound inequality that describes the ages of all humans.

You can solve compound inequalities by solving two inequalities separately. When a compound inequality with "and" is written as a single inequality, you can solve the inequality by performing the same operation on each expression.

EXAMPLE 2 Solving a Compound Inequality with "And"

Solve $-3 < -2x + 1 \le 9$. Graph the solution.

	$-3 < -2x + 1 \leq$	9 Write the inequality.
	<u>-1</u> <u>-1</u> <u>-</u>	1 Subtract 1 from each expression.
0	$-4 < -2x \leq 8$	Simplify.
	$\frac{-4}{-2} \ge \frac{-2x}{-2} \ge \frac{-2x}{-2}$	$\frac{8}{2}$ Divide each expression by -2 . Reverse the inequality symbols.
	$2 > x \ge -$	-4 Simplify.
	\therefore The solution is -4	$\leq x < 2.$

-6 -5 -4 -3 -2 -1 0 1 2 3 4

EXAMPLE 3 Solving a Compound Inequality with "Or"

Solve 3x - 5 < -8 or 2x - 1 > 5. Graph the solution.

3x - 5 < -8	or	2x - 1 > 5	Write the inequality.
+5 +5		± 1 ± 1	Addition Property of Inequality
3x < -3	or	2x > 6	Simplify.
$\frac{3x}{3} < \frac{-3}{3}$	or	$\frac{2x}{2} > \frac{6}{2}$	Division Property of Inequality
<i>x</i> < -1	or	<i>x</i> > 3	Simplify.

• The solution is x < -1 or x > 3.

Practice

Solve the inequality. Graph the solution.

- **7.** 4 < x 5 < 7
- **8.** $-1 \le 2x + 3 < 7$ **9.** $15 > -3x + 9 \ge 0$
- **10.** $4x + 1 \le -11$ or $3x 4 \ge 5$

11. $-2x - 7 < 5 \text{ or } -5x + 6 \ge 41$

Study Tip 🖌

When an absolute value expression is on the left side of an inequality, use an "and" statement for < and \leq , and an "or" statement for > and \geq .

An **absolute value inequality** is an inequality that contains an absolute value expression. For example, |x| < 2 and |x| > 2 are absolute value inequalities.

You can solve these types of inequalities by solving a compound inequality.

Solving Absolute Value Inequalities

To solve |ax + b| < c for c > 0, solve the compound inequality ax + b > -c and ax + b < c. To solve |ax + b| > c for c > 0, solve the compound inequality ax + b < -c or ax + b > c.

In the inequalities above, you can replace < with \leq and > with \geq .

EXAMPLE 4 Solving Absolute Value Inequalities

a. Solve $|x + 7| \le 2$. Graph the solution.

Use $|x + 7| \le 2$ to write a compound inequality. Then solve.

$x + 7 \ge -2$	and	$x + 7 \leq 2$	W
<u>-7</u> <u>-7</u>		<u>-7</u> <u>-7</u>	Su
$x \ge -9$	and	$x \leq -5$	Sir

Write compound inequality. Subtract 7 from each side. Simplify.

• The solution is $x \ge -9$ and $x \le -5$.

b. Solve |8x - 11| < 0.

The absolute value of an expression must be greater than or equal to 0. The expression |8x - 11| cannot be less than 0.

So, the inequality has no solution.

EXAMPLE

5

Solving an Absolute Value Inequality

Solve 4|2x-5|+1>29. 4|2x-5|+1>29 Write the inequality. |2x-5| > 7 Isolate the absolute value expression.

Use |2x - 5| > 7 to write a compond inequality. Then solve.

2x-5 < -7	or	2x - 5 > 7	Write compound inequality.
+5 +5		<u>+5</u> <u>+5</u>	Add 5 to each side.
2x < -2	or	2x > 12	Simplify.
$\frac{2x}{2} < \frac{-2}{2}$	or	$\frac{2x}{2} > \frac{12}{2}$	Divide each side by 2.
x < -1	or	x > 6	Simplify.

EXAMPLE

Real-Life Application 6 –

In a poll, 47% of voters say they plan to reelect the mayor. The poll has a margin of error of ±2 percentage points. Write and solve an absolute value inequality to find the least and greatest percents of voters who plan to reelect the mayor.

Words	Actual per of voters	cent minus	percent of voters in poll	is less than or equal to	the margin of error.
Variable	Let <i>x</i> rep reelectin	resent the ac g the mayor.	ctual percent o	f voters who p	plan on
Inequalit	t y x	—	<mark>47</mark>	\leq	2
<i>x</i> –	$47 \geq -2$	and x -	$-47 \le 2$	Write comp	ound inequality.
+	<u>47</u> <u>+47</u>	2	+47 +47	Add 47 to e	ach side.
	$x \ge 45$	and	$x \le 49$	Simplify.	

The least percent of voters who plan to reelect the mayor is 45%. The greatest percent of voters who plan to reelect the mayor is 49%.

Practice

Solve the inequality. Graph the solution, if possible.

- **13.** |x+7| < 1 **14.** $11 \ge |4x-5|$ **16.** $3|2x+5|-8 \ge 19$ **17.** -2|x-10|+1 > -7**12.** $|x-3| \ge 4$ **15.** |8x - 9| < 0
- **18. NUMBER SENSE** What is the solution of $|4x 2| \ge -6$? Explain.
- 19. MODELING In Example 6, 44% of the voters say they plan to reelect the mayor. The poll has a margin of error of ± 3 percentage points. Use a model to write and solve an absolute value inequality to find the least and greatest percents of voters who plan to reelect the mayor.