Key Vocabulary
compound inequality, p. 132
absolute value
inequality, p. 134

A compound inequality is an inequality formed by joining two inequalities with the word "and" or the word "or."

Solutions of a compound inequality with "and" consist of numbers that are solutions of both inequalities.

$$
\begin{aligned}
& x \geq 2 \\
& x<5
\end{aligned}
$$

$y \leq-2$

$y>1$

$y \leq-2$ or $y>1$
Solutions of a compound inequality with "or" consist of numbers that are solutions of at least one of the inequalities.

EXAMPLE 17 Writing and Graphing Compound Inequalfities

Study Tip

A compound inequality with "and" can be written as a single inequality. For example, you can write $x>-8$ and $x \leq 4$ as $-8<x \leq 4$.

Write each word sentence as an inequality. Graph the inequality.
a. A number x is greater than -8 and less than or equal to 4.

A number x is greater than -8 and less than or equal to 4 .

b. A number y is at most 0 or at least 7 .

A number y is at most 0 or at least 7 .

Practice

In Exercises 1-4, write the word sentence as an inequality. Graph the inequality.

1. A number k is more than 3 and less than 9 .
2. A number n is greater than or equal to 6 and no more than 11 .
3. A number w is fewer than -10 or no less than -6 .
4. A number z is less than or equal to -5 or more than 4 .
5. Write an inequality to describe the graph.

6. The world's longest human life span is 122 years. Write and graph a compound inequality that describes the ages of all humans.

You can solve compound inequalities by solving two inequalities separately. When a compound inequality with "and" is written as a single inequality, you can solve the inequality by performing the same operation on each expression.

EXAMPLE

Study Tip

You can also solve the inequality in Example 2 by solving the inequalities

$$
-3<-2 x+1
$$

and

$$
-2 x+1 \leq 9
$$

separately.

2 Solving a compound Inequalfty with "And"
Solve $-3<-2 x+1 \leq 9$. Graph the solution.
$-3<-2 x+1 \leq 9 \quad$ Write the inequality.
$\underline{-1} \quad \underline{-1} \quad$ Subtract 1 from each expression.
Simplify.
Divide each expression by -2 .
Reverse the inequality symbols.
Simplify.
\therefore The solution is $-4 \leq x<2$.

EXAMPLE

Common Core

Solving Inequalities

In this extension, you will

- write, solve, and graph compound inequalities.
- write, solve, and graph absolute value inequalities.
Applying Standards
A.CED. 1
A.CED. 3
A.REI. 3

3 Solving a Compound Inequalfty with "Or"
Solve $3 x-5<-8$ or $\mathbf{2 x - 1}>5$. Graph the solution.

$$
\begin{array}{rlrll}
3 x-5<-8 & \text { or } & 2 x-1> & 5 & \text { Write the inequality. } \\
\frac{+5}{3 x}<-\frac{+5}{-3} & \text { or } & \frac{+1}{2 x}>\frac{+1}{6} & & \text { Addition Property of Inequality } \\
\frac{3 x}{3}<\frac{-3}{3} & \text { or } & \frac{2 x}{2}>\frac{6}{2} & & \text { Simplify. } \\
x<-1 & \text { or } & x>3 & & \text { Sivision Property of Inequality. }
\end{array}
$$

\therefore The solution is $x<-1$ or $x>3$.

Practice

Solve the inequality. Graph the solution.
7. $4<x-5<7$
8. $-1 \leq 2 x+3<7$
9. $15>-3 x+9 \geq 0$
10. $4 x+1 \leq-11$ or $3 x-4 \geq 5$
11. $-2 x-7<5$ or $-5 x+6 \geq 41$

When an absolute value expression is on the left side of an inequality, use an "and" statement for < and \leq, and an "or"statement for $>$ and \geq.

An absolute value inequality is an inequality that contains an absolute value expression. For example, $|x|<2$ and $|x|>2$ are absolute value inequalities.

The distance between x and 0 is less than 2 .
$|x|<2$

The graph of $|x|<2$ is $x>-2$ and $x<2$.

The distance between x and 0 is greater than 2 .

The graph of $|x|>2$ is $x<-2$ or $x>2$.

You can solve these types of inequalities by solving a compound inequality.

Key Idea

Solving Absolute Value Inequalities

To solve $|a x+b|<c$ for $c>0$, solve the compound inequality

$$
a x+b>-c \quad \text { and } \quad a x+b<c .
$$

To solve $|a x+b|>c$ for $c>0$, solve the compound inequality

$$
a x+b<-c \quad \text { or } \quad a x+b>c .
$$

In the inequalities above, you can replace $<$ with \leq and $>$ with \geq.

EXAMPLE
 4) Solving Absolute Value Inequalities

a. Solve $|x+7| \leq 2$. Graph the solution.

Use $|x+7| \leq 2$ to write a compound inequality. Then solve.

$$
\begin{array}{rlrll}
x+7 & \geq-2 & \text { and } & x+7 \leq 2 & \text { Write compound inequality. } \\
\frac{-7}{x} \frac{-7}{-9} & & \frac{-7}{-} & \text { and } & x \leq-5
\end{array} \quad \begin{aligned}
& \text { Subtract } 7 \text { from each side. } \\
& \text { Simplify. }
\end{aligned}
$$

\therefore The solution is $x \geq-9$ and $x \leq-5$.

b. Solve $|8 x-11|<0$.

The absolute value of an expression must be greater than or equal to 0 . The expression $|8 x-11|$ cannot be less than 0 .
$\therefore \quad$ So, the inequality has no solution.

Solve $4|2 x-5|+1>29$.

$$
\begin{aligned}
4|2 x-5|+1 & >29 & & \text { Write the inequality. } \\
|2 x-5| & >7 & & \text { Isolate the absolute value expression. }
\end{aligned}
$$

Use $|2 x-5|>7$ to write a compond inequality. Then solve.

$$
\begin{array}{rlrl}
2 x-5<-7 & \text { or } & 2 x-5>7 & \text { Write compound inequality. } \\
\frac{+5}{2 x}<-2 & & \underline{+5}+\frac{+5}{2 x} & \\
\text { or } & 2 d d 5 \text { to each side. } \\
\frac{2 x}{2}<\frac{-2}{2} & \text { or } & \frac{2 x}{2}>\frac{12}{2} & \text { Simplify. } \\
x<-1 & \text { or } & x>6 & \text { Divide each side by } 2 . \\
\text { Simplify. }
\end{array}
$$

EXAMPLE (6) Real-Life Application

In a poll, 47% of voters say they plan to reelect the mayor. The poll has a margin of error of ± 2 percentage points. Write and solve an absolute value inequality to find the least and greatest percents of voters who plan to reelect the mayor.

Words $\left\lvert\,$	Actual percent
of voters	\(\begin{aligned} \& minus \begin{array}{l}percent of

voters in poll\end{array}\end{aligned} $$
\begin{aligned} & \text { is less than the margin } \\
& \text { or equal to of error. }\end{aligned}
$$\right.\)
Variable Let x represent the actual percent of voters who plan on reelecting the mayor.

Inequality	x	-	47	\leq	2

$x-47 \geq-2$ and $x-47 \leq 2 \quad$ Write compound inequality.

$\underline{+47} \frac{+47}{+47} \frac{+47}{}$	Add 47 to each side.		
$x \geq 45$	and	$x \leq 49$	Simplify.

\therefore The least percent of voters who plan to reelect the mayor is 45%. The greatest percent of voters who plan to reelect the mayor is 49%.

Practice

Solve the inequality. Graph the solution, if possible.
12. $|x-3| \geq 4$
13. $|x+7|<1$
14. $11 \geq|4 x-5|$
15. $|8 x-9|<0$
16. $3|2 x+5|-8 \geq 19$
17. $-2|x-10|+1>-7$
18. NUMBER SENSE What is the solution of $|4 x-2| \geq-6$? Explain.
19. MODELING In Example 6, 44% of the voters say they plan to reelect the mayor. The poll has a margin of error of ± 3 percentage points. Use a model to write and solve an absolute value inequality to find the least and greatest percents of voters who plan to reelect the mayor.

