3.1 Writing and Graphing Inequalities

Essential Question How can you use an inequality to describe a

real-life statement?

ACTIVITY: Writing and Graphing Inequalities

Work with a partner. Write an inequality for the statement. Then sketch the graph of all the numbers that make the inequality true.

a. Statement: The temperature *t* in Minot, North Dakota has never been below -36 °F.

Inequality:

b. Statement: The elevation *e* in Wisconsin is at most 1951.5 feet above sea level.

2 ACTIVITY: Writing and Graphing Inequalities

Work with a partner. Write an inequality for the graph. Then, in words, describe all the values of x that make the inequality true.

ACTIVITY: Triangle Inequality

Work with a partner. Use 8 to 10 pieces of spaghetti.

• Break one piece of spaghetti into three parts that can be used to form a triangle.

Math Practice

Construct

Arguments How can you use results from this

activity to write

a rule?

- Form a triangle and use a centimeter ruler to measure each side. Round the side lengths to the nearest tenth.
- Record the side lengths in a table.
- Repeat the process with two other pieces of spaghetti.
- Repeat the experiment by breaking pieces of spaghetti into three pieces that *do not* form a triangle. Record the lengths in a table.
- **INDUCTIVE REASONING** Write a rule that uses an inequality to compare the lengths of three sides of a triangle.

M 6 2 3 4 5 6 7 7 6 7 6 7 6 7 7 6 7 7 7 6 7 7 7 7				
	Side Lengths That Form a Triangle			
	Small	Medium	Large	S + M

Side Lengths That Do Not Form a Triangle			
Small	Medium	Large	S + M

• Use your rule to decide whether the following triangles are possible. Explain.

-What Is Your Answer?

4. IN YOUR OWN WORDS How can you use an inequality to describe a real-life statement? Give two examples of real-life statements that can be represented by inequalities.

Use what you learned about writing and graphing inequalities to complete Exercises 4 and 5 on page 108.

3.1 Lesson

Key Vocabulary 📢

inequality, p. 106 solution of an inequality, p. 106 solution set, p. 106 graph of an inequality, p. 107 An **inequality** is a mathematical sentence that compares expressions. It contains the symbol <, >, \leq , or \geq . To write an inequality, look for the following phrases to determine where to place the inequality symbol.

Inequality Symbols				
Symbol	<	>	\leq	>1
Key Phrases	 is less than is fewer than 	 is greater than is more than 	 is less than or equal to is at most is no more than 	 is greater than or equal to is at least is no less than

EXAMPLE 1 Writing

Writing an Inequality

A number w minus 3.5 is less than or equal to -2. Write this sentence as an inequality.

An inequality is $w - 3.5 \le -2$.

On Your Own

Write the word sentence as an inequality.

1. A number *b* is fewer than 30.4. **2.** Twice a number *k* is at least $-\frac{7}{10}$.

A **solution of an inequality** is a value that makes the inequality true. An inequality can have more than one solution. The set of all solutions of an inequality is called the **solution set**.

Value of <i>x</i>	$x + 5 \ge -2$	Is the inequality true?
-6	$-6+5 \stackrel{?}{\geq} -2$ $-1 \geq -2 \checkmark$	yes
-7	$-7 + 5 \stackrel{?}{\geq} -2$ $-2 \geq -2 \checkmark$	yes
-8	$-8+5 \stackrel{?}{\geq} -2$ $-3 \not\geq -2 \checkmark$	no

The symbol ≱ means "is not greater than or equal to." **EXAMPLE** 2

Checking Solutions

Tell whether -4 is a solution of each inequality.

The **graph of an inequality** shows all of the solutions of the inequality on a number line. An open circle O is used when a number is *not* a solution. A closed circle \bullet is used when a number is a solution. An arrow to the left or right shows that the graph continues in that direction.

3.1 Exercises

Vocabulary and Concept Check

- **1. VOCABULARY** Would an open circle or a closed circle be used in the graph of the inequality k < 250? Explain.
- 2. DIFFERENT WORDS, SAME QUESTION Which is different? Write "both" inequalities.

w is greater than or equal to -7 .	w is no less than -7 .
w is no more than -7 .	w is at least -7 .

3. REASONING Do $x \ge -9$ and $-9 \ge x$ represent the same inequality? Explain.

Practice and Problem Solving

Write an inequality for the graph. Then, in words, describe all the values of x that make the inequality true.

Write the word sentence as an inequality.

- **1 6.** A number *x* is no less than -4.
 - 8. A number *b* multiplied by -5 is at most $-\frac{3}{4}$.
 - **9.** A number *k* minus 8.3 is greater than 48.
 - **10. ERROR ANALYSIS** Describe and correct the error in writing the word sentence as an inequality.

7. A number *y* added to 5.2 is less than 23.

13. $a - 2.5 \le 1.6$; a = 4.1

16. $\frac{1}{12} - p < \frac{1}{3}; p = \frac{1}{6}$

Tell whether the given value is a solution of the inequality.

2 11. $s + 6 \le 12$; $s = 4$	12. $15n > -3; n = -2$
14. $-3.3q > -13; q = 4.6$	15. $\frac{4}{5}h \ge -4; h = -15$

Graph the inequality on a number line.

B 17. $g \ge -6$ 18. q > 1.25 19. $z < 11\frac{1}{4}$ 20. $w \le -\sqrt{64}$

21. DRIVING When you are driving with a learner's license, a licensed driver who is 21 years of age or older must be with you. Write an inequality that represents this situation.

Tell whether the given value is a solution of the inequality.

22. 3p > 5 + p; p = 4

23.
$$\frac{y}{2} \ge y - 11; y = 18$$

24. LOGIC Each video game rating is matched with the inequality that represents the suggested ages of players. Your friend is old enough to play "E 10+" games. Is your friend old enough to play "T" games? Explain.

- The ESRB rating icons are registered trademarks of the Entertainment Software Association.
- **25. SCUBA DIVING** Three requirements for a scuba diving training course are shown.
 - a. Write and graph three inequalities that represent the requirements.
 - **b.** You can swim 10 lengths of a 25-yard pool. Do you satisfy the swimming requirement of the course? Justify your answer.
- **26. REPEATED REASONING** On an airplane, the maximum sum of the length, width, and height of a carry-on bag is 45 inches. Find three different sets of dimensions that are reasonable for a carry-on bag. Use a diagram to justify your answer.
- **27.** Thinking A number m is less than another number n. The number n is less than or equal to a third number p.
 - **a.** Write two inequalities representing these relationships.
 - **b.** Describe the relationship between *m* and *p*.
 - **c.** Can *m* be equal to *p*? Explain.

Fair Game Review What you learned in previous grades & lessons

Solve the equation. Check your solution. (Section 1.1)

- **28.** r 12 = 3 **29.** 4.2 + p = 2.5 **30.** $n 3\pi = 7\pi$
- **31. MULTIPLE CHOICE** Which of the following is the equation of the line in slope-intercept form? (*Section 2.5*)

(A)
$$y = -2x + 1$$
 (B) $y = -x - 1$

(C) y = x + 1 **(D)** y = -x + 1

Renality and the second second