Ghapter Review

Review Key Vocabulary

linear equation $p .44$
solution of a linear equation, p. 44
slope, p. 50
rise, p. 50
run, p. 50
perpendicular lines, p. 57
x-intercept, p. 60
y-intercept, p. 60
slope-intercept form, p. 60
standard form, p. 66
point-slope form, p. 80

Review Examples and Exercises

2.1. Graphing Linear Equations (pp. 42-47)

Graph $y=3 x-1$.
Step 1: Make a table of values.

\boldsymbol{x}	$\boldsymbol{y}=3 \boldsymbol{x}-\mathbf{1}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$y=3(-2)-1$	-7	$(-2,-7)$
-1	$y=3(-1)-1$	-4	$(-1,-4)$
0	$y=3(0)-1$	-1	$(0,-1)$
1	$y=3(1)-1$	2	$(1,2)$

Step 2: Plot the ordered pairs.

Step 3: Draw a line through the points.

Exercises

Graph the linear equation.

1. $y=\frac{3}{5} x$
2. $y=-2$
3. $y=9-x$
4. $y=1$
5. $y=\frac{2}{3} x+2$
6. $x=-5$

2.2 Slope of a Line (pp. 48-57)

Find the slope of each line in the graph.

Red Line: slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-(-3)}{2-2}=\frac{8}{0}$
\therefore The slope of the red line is undefined.
Blue Line: slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-2}{4-(-3)}=\frac{-3}{7}$, or $-\frac{3}{7}$
Green Line: slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-4}{5-0}=\frac{0}{5}$, or 0

Exercises

The points in the table lie on a line. How can you find the slope of the line from the table? What is the slope?

7. | x | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| y | -1 | 0 | 1 | 2 |
8.

x	-2	0	2	4
y	3	4	5	6

9. Are the lines $x=2$ and $y=4$ parallel? Are they perpendicular? Explain.

2.3 Graphing Linear Equations in Slope-Intercept Form (pp. 58-63)

Graph $y=0.5 x-3$. Identify the x-intercept.
Step 1: Find the slope and y-intercept.

Step 2: The y-intercept is -3 . So, plot $(0,-3)$.

Step 3: Use the slope to find another point and draw the line.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{1}{2}
$$

Plot the point that is 2 units right and 1 unit up from $(0,-3)$. Draw a line through the two points.
$\therefore \quad$ The line crosses the x-axis at $(6,0)$. So, the x-intercept is 6 .

Exercises

Graph the linear equation. Identify the x-intercept. Use a graphing calculator to check your answer.
10. $y=2 x-6$
11. $y=-4 x+8$
12. $y=-x-8$

2.4. Graphing Linear Equations in Standard Form (pp. 64-69)

Graph $8 x+4 y=16$.

Step 1: Write the equation in slope-intercept form.

$$
\begin{aligned}
8 x+4 y & =16 & & \text { Write the equation. } \\
4 y & =-8 x+16 & & \text { Subtract } 8 x \text { from each side. } \\
y & =-2 x+4 & & \text { Divide each side by } 4 .
\end{aligned}
$$

Step 2: Use the slope and y-intercept to plot two points.

Step 3: Draw a line through the points.

Exercises

Graph the linear equation.
13. $\frac{1}{4} x+y=3$
14. $-4 x+2 y=8$
15. $x+5 y=10$
16. $-\frac{1}{2} x+\frac{1}{8} y=\frac{3}{4}$
17. A dog kennel charges $\$ 30$ per night to board your dog and $\$ 6$ for each hour of play time. The amount of money you spend is given by $30 x+6 y=180$, where x is the number of nights and y is the number of hours of play time. Graph the equation and interpret the intercepts.

2.5 Writing Equations in Slope-Intercept Form (pp. 72-77)

Write an equation of the line in slope-intercept form.

a.

Find the slope and y-intercept.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{2-0}=\frac{2}{2} \text {, or } 1
$$

Because the line crosses the y-axis at $(0,2)$, the y-intercept is 2 .

\because So, the equation is $y=1 x+2$, or $y=x+2$.
b.

Find the slope and y-intercept.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-(-2)}{3-0}=\frac{-2}{3}, \text { or }-\frac{2}{3}
$$

Because the line crosses the y-axis at $(0,-2)$, the y-intercept is -2 .
\therefore So, the equation is $y=-\frac{2}{3} x+(-2)$, or $y=-\frac{2}{3} x-2$.

Exercises

Write an equation of the line in slope-intercept form.

18.

19.

20. Write an equation of the line that passes through $(0,8)$ and $(6,8)$.
21. Write an equation of the line that passes through $(0,-5)$ and $(-5,-5)$.

2.6 Writing Equations in Point-Slope Form (pp. 78-85)

Write in slope-intercept form an equation of the line that passes

 through the points $(2,1)$ and $(3,5)$.Find the slope.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{3-2}=\frac{4}{1} \text {, or } 4
$$

Then use the slope and one of the given points to write an equation of the line.

Use $m=4$ and $(2,1)$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Write the point-slope form. } \\
y-1 & =4(x-2) & & \text { Substitute } 4 \text { for } m, 2 \text { for } x_{1} \text {, and } 1 \text { for } y_{1} . \\
y-1 & =4 x-8 & & \text { Use Distributive Property. } \\
y & =4 x-7 & & \text { Write in slope-intercept form. }
\end{aligned}
$$

\therefore So, the equation is $y=4 x-7$.

Exercises

22. Write in point-slope form an equation of the line that passes through the point $(4,4)$ with slope 3 .
23. Write in slope-intercept form an equation of the line that passes through the points $(-4,2)$ and $(6,-3)$.

2.7 Solving Real-Life Problems (pp. 86-91)

The amount y (in dollars) of money you have left after playing x games at a carnival is $y=-0.75 x+10$. How much money do you have after playing eight games?

$$
\begin{aligned}
y & =-0.75 x+10 & & \text { Write the equation. } \\
& =-0.75(8)+10 & & \text { Substitute } 8 \text { for } x . \\
& =4 & & \text { Simplify. }
\end{aligned}
$$

\therefore You have $\$ 4$ left after playing 8 games.

Exercises

24. HAY The amount y (in bales) of hay remaining after feeding cows for x days is $y=-3.5 x+105$. (a) Graph the equation. (b) Interpret the x - and y-intercepts. (c) How many bales are left after 10 days?
