

Review Key Vocabulary

linear equation *p. 44* solution of a linear equation, *p. 44* slope, *p. 50* rise, *p. 50* run, *p. 50* perpendicular lines, *p. 57* *x*-intercept, *p.y*-intercept, *p.*slope-intercept form, *p.*standard form, *p.*point-slope form, *p.*

Review Examples and Exercises

2.1 Graphing Linear Equations (pp. 42–47)

$\operatorname{Graph} y = 3x - 1.$

Step 1: Make a table of values.

x	y = 3x - 1	У	(x, y)
-2	y = 3(-2) - 1	-7	(-2, -7)
-1	y = 3(-1) - 1	-4	(-1, -4)
0	y = 3(0) - 1	-1	(0, -1)
1	y = 3(1) - 1	2	(1, 2)

Step 2: Plot the ordered pairs.

Step 3: Draw a line through the points.

Exercises

Graph the linear equation.

1.
$$y = \frac{3}{5}x$$

2. $y = -2$
3. $y = 9 - x$
4. $y = 1$
5. $y = \frac{2}{3}x + 2$
6. $x = -5$

2.2 Slope of a Line (pp. 48–57)

Find the slope of each line in the graph.

Red Line: slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-3)}{2 - 2} = \frac{8}{0}$ \therefore The slope of the red line is undefined. **Blue Line:** slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 2}{4 - (-3)} = \frac{-3}{7}$, or $-\frac{3}{7}$ **Green Line:** slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 4}{5 - 0} = \frac{0}{5}$, or 0

= 0.5x - 3

2

(0, -3)

(6, 0)

Exercises

The points in the table lie on a line. How can you find the slope of the line from the table? What is the slope?

7.	x	0	1	2	3
	У	-1	0	1	2

8.	x	-2	0	2	4
	у	3	4	5	6

9. Are the lines x = 2 and y = 4 parallel? Are they perpendicular? Explain.

2.3 Graphing Linear Equations in Slope-Intercept Form (pp. 58–63)

Graph y = 0.5x - 3. Identify the *x*-intercept.

Step 1: Find the slope and *y*-intercept.

$$y = 0.5x + (-3)$$
slope y-intercept

Step 2: The *y*-intercept is -3. So, plot (0, -3).

Step 3: Use the slope to find another point and draw the line.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{1}{2}$$

Plot the point that is 2 units right and 1 unit up from (0, -3). Draw a line through the two points.

The line crosses the *x*-axis at (6, 0). So, the *x*-intercept is 6.

Exercises

Graph the linear equation. Identify the *x*-intercept. Use a graphing calculator to check your answer.

10. y = 2x - 6 **11.** y = -4x + 8 **12.** y = -x - 8

2.4 Graphing Linear Equations in Standard Form (pp. 64–69)

Graph 8x + 4y = 16.

Step 1: Write the equation in slope-intercept form.

8x + 4y = 16Write the equation.4y = -8x + 16Subtract 8x from each side.y = -2x + 4Divide each side by 4.

Step 2: Use the slope and *y*-intercept to plot two points.

Step 3: Draw a line through the points.

Exercises

Graph the linear equation.

- **13.** $\frac{1}{4}x + y = 3$ **14.** -4x + 2y = 8

 15. x + 5y = 10 **16.** $-\frac{1}{2}x + \frac{1}{8}y = \frac{3}{4}$
- **17.** A dog kennel charges \$30 per night to board your dog and \$6 for each hour of play time. The amount of money you spend is given by 30x + 6y = 180, where *x* is the number of nights and *y* is the number of hours of play time. Graph the equation and interpret the intercepts.

20. Write an equation of the line that passes through (0, 8) and (6, 8).

21. Write an equation of the line that passes through (0, -5) and (-5, -5).

2.6 Writing Equations in Point-Slope Form (pp. 78–85)

Write in slope-intercept form an equation of the line that passes through the points (2, 1) and (3, 5).

Find the slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{3 - 2} = \frac{4}{1}$$
, or 4

Then use the slope and one of the given points to write an equation of the line.

Use m = 4 and (2, 1).

$y - y_1 = m(x - x_1)$	Write the point-slope form.
y-1=4(x-2)	Substitute 4 for m , 2 for x_1 , and 1 for y_1 .
y - 1 = 4x - 8	Use Distributive Property.
y = 4x - 7	Write in slope-intercept form.

So, the equation is y = 4x - 7.

Exercises

- **22.** Write in point-slope form an equation of the line that passes through the point (4, 4) with slope 3.
- **23.** Write in slope-intercept form an equation of the line that passes through the points (-4, 2) and (6, -3).

2.7 So

Solving Real-Life Problems (pp. 86–91)

The amount y (in dollars) of money you have left after playing x games at a carnival is y = -0.75x + 10. How much money do you have after playing eight games?

y = -0.75x + 10	Write the equation.
= -0.75(8) + 10	Substitute 8 for <i>x</i> .
= 4	Simplify.

• You have \$4 left after playing 8 games.

Exercises

24. HAY The amount *y* (in bales) of hay remaining after feeding cows for *x* days is y = -3.5x + 105. (a) Graph the equation. (b) Interpret the *x*- and *y*-intercepts. (c) How many bales are left after 10 days?

