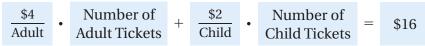
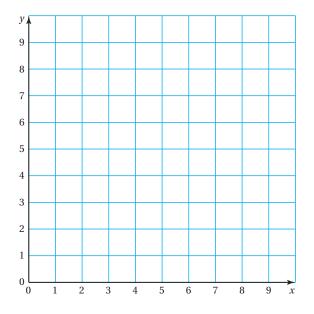
2.4


Essential Question How can you describe the graph of the

equation ax + by = c?

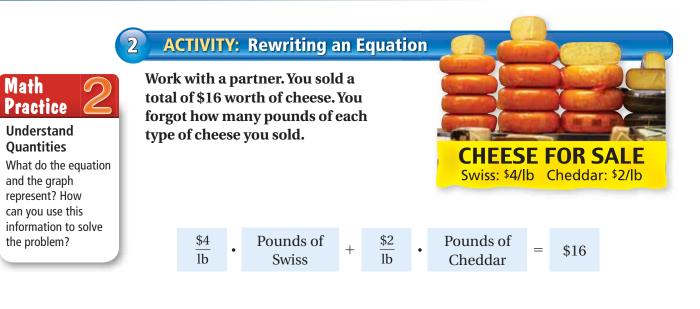
ACTIVITY: Using a Table to Plot Points

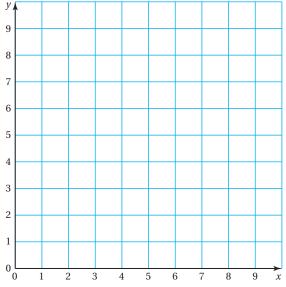
Work with a partner. You sold a total of \$16 worth of tickets to a school concert. You lost track of how many of each type of ticket you sold.



- Let *x* represent the number of adult tickets. a. Let *y* represent the number of child tickets. Write an equation that relates *x* and *y*.
- **b.** Copy and complete the table showing the different combinations of tickets you might have sold.

Number of Adult Tickets, <i>x</i>			
Number of Child Tickets, y			


- Plot the points from the c. table. Describe the pattern formed by the points.
- d. If you remember how many adult tickets you sold, can you determine how many child tickets you sold? Explain your reasoning.

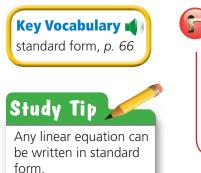


Graphing Equations In this lesson, you will graph linear equations written in standard form.

Learning Standards A.CED.2 A.REI.10 F.IF.4

- a. Let *x* represent the number of pounds of Swiss cheese.
 Let *y* represent the number of pounds of Cheddar cheese.
 Write an equation that relates *x* and *y*.
- **b.** Rewrite the equation in slope-intercept form. Then graph the equation.

-What Is Your Answer?


- **3. IN YOUR OWN WORDS** How can you describe the graph of the equation ax + by = c?
- **4.** Activities 1 and 2 show two different methods for graphing ax + by = c. Describe the two methods. Which method do you prefer? Explain.
- 5. Write a real-life problem that is similar to those shown in Activities 1 and 2.
- **6.** Why do you think it might be easier to graph x + y = 10 using standard form instead of rewriting it in slope-intercept form and then graphing?

Use what you learned about graphing linear equations in standard form to complete Exercises 3 and 4 on page 68.

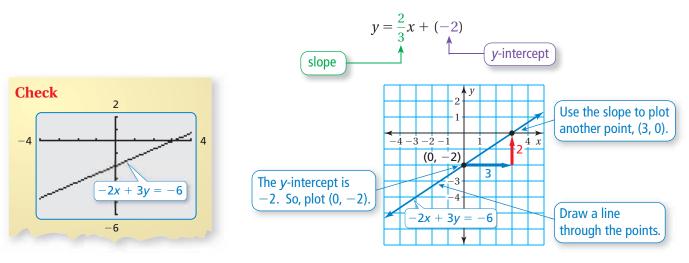
2.4 Lesson

Standard Form of a Linear Equation

The <mark>standard form</mark> of a linear equation is

ax + by = c

where *a* and *b* are not both zero.


EXAMPLE Graphing a Linear Equation in Standard Form

Graph -2x + 3y = -6.

Step 1: Write the equation in slope-intercept form.

2x + 3y = -6	Write the equation.
3y = 2x - 6	Add 2x to each side.
$y = \frac{2}{3}x - 2$	Divide each side by 3.

Step 2: Use the slope and *y*-intercept to graph the equation.

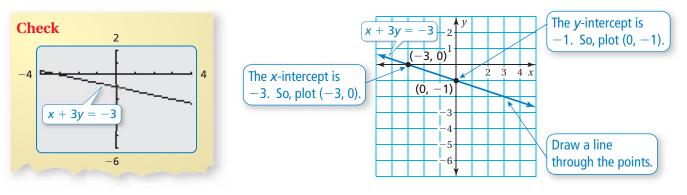
On Your Own

Now You're Ready Exercises 5–10 Graph the linear equation. Use a graphing calculator to check your graph.

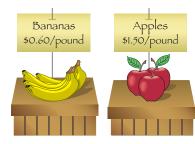
1.
$$x + y = -2$$

2. $-\frac{1}{2}x + 2y = 6$
3. $-\frac{2}{3}x + y = 0$
4. $2x + y = 5$

EXAMPLE


2

Graphing a Linear Equation in Standard Form


Graph x + 3y = -3 using intercepts.

Step 1: To find the <i>x</i> -intercept, substitute 0 for <i>y</i> .	To find the <i>y</i> -intercept, substitute 0 for <i>x</i> .
x + 3y = -3	x + 3y = -3
x + 3(0) = -3	0 + 3y = -3
x = -3	y = -1

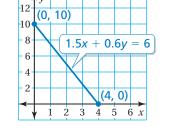
Step 2: Graph the equation.

EXAMPLE 3 Real-Life Application

You have \$6 to spend on apples and bananas. (a) Graph the equation 1.5x + 0.6y = 6, where x is the number of pounds of apples and y is the number of pounds of bananas. (b) Interpret the intercepts.

a. Find the intercepts and graph the equation.

x-intercept	y-intercept
1.5x + 0.6y = 6	1.5x + 0.6y = 6
1.5x + 0.6(0) = 6	1.5(0) + 0.6y = 6
x = 4	<i>y</i> = 10


b. The *x*-intercept shows that you can buy 4 pounds of apples if you don't buy any bananas. The *y*-intercept shows that you can buy 10 pounds of bananas if you don't buy any apples.

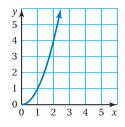
On Your Own

Graph the linear equation using intercepts. Use a graphing calculator to check your graph.

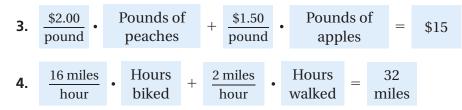
5. 2x - y = 8

- **6.** x + 3y = 6
- **7.** WHAT IF? In Example 3, you buy *y* pounds of oranges instead of bananas. Oranges cost \$1.20 per pound. Graph the equation 1.5x + 1.2y = 6. Interpret the intercepts.

V



2.4 Exercises


Vocabulary and Concept Check

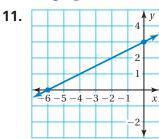
- **1. VOCABULARY** Is the equation y = -2x + 5 in standard form? Explain.
- **2. REASONING** Does the graph represent a linear equation? Explain.

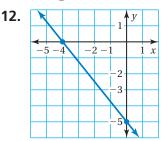
Practice and Problem Solving

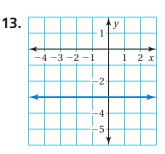
Define two variables for the verbal model. Write an equation in slope-intercept form that relates the variables. Graph the equation.

Write the linear equation in slope-intercept form.

1 5.
$$2x + y = 17$$
 6. $5x - y = \frac{1}{4}$ **7**


7.
$$-\frac{1}{2}x + y = 10$$


Graph the linear equation. Use a graphing calculator to check your graph.


8. -18x + 9y = 72 **9.** 16x - 4y = 2

10.
$$\frac{1}{4}x + \frac{3}{4}y = 1$$

Use the graph to find the x- and y-intercepts.

- **14. ERROR ANALYSIS** Describe and correct the error in finding the *x*-intercept.
- **15. BRACELET** A charm bracelet costs \$65, plus \$25 for each charm.
 - **a.** Write an equation in standard form that represents the total cost of the bracelet.
 - **b.** How much does the bracelet shown cost?

-2x + 3y = 12 -2(0) + 3y = 12 3y = 12y = 4

Graph the linear equation using intercepts. Use a graphing calculator to check your graph.

2 16.
$$3x - 4y = -12$$

17.
$$2x + y = 8$$

18.
$$\frac{1}{3}x - \frac{1}{6}y = -\frac{2}{3}$$

Basic Information

.....John Doe

Pay to the Order of:

of hours worked as host: x

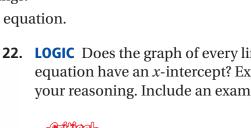
of hours worked as

..... server: y Earnings for this pay

..... period: \$160.65

19. SHOPPING The amount of money you spend on x CDs and y DVDs is given by the equation 14x + 18y = 126. Find the intercepts and graph the equation.

- **20.** SCUBA Five friends go scuba diving. They rent a boat for x days and scuba gear for y days. The total spent is \$1000.
 - **a.** Write an equation in standard form that represents the situation.
 - **b.** Graph the equation and interpret the intercepts.
- **21. MODELING** You work at a restaurant as a host and a server. You earn \$9.45 for each hour you work as a host and \$7.65 for each hour you work as a server.
 - **a.** Write an equation in standard form that models your earnings.
 - **b.** Graph the equation.
 - **22. LOGIC** Does the graph of every linear equation have an *x*-intercept? Explain your reasoning. Include an example.
 - thinking For a house call, a veterinarian charges 23. \$70, plus \$40 an hour.
 - Write an equation that represents the total fee *y* a. charged by the veterinarian for a visit lasting *x* hours.
 - Find the *x*-intercept. Will this point appear on the b. graph of the equation? Explain your reasoning.
 - Graph the equation. c.


Fair Game Review What you learned in previous grades & lessons

Copy and complete the table of values. (*Skills Review Handbook*)

24.	x	-2	-1	0	1	2	25.	x	-2	-1	0	1	2
	2 <i>x</i> + 5							-5 - 3x					

26. MULTIPLE CHOICE Which value of x makes the equation 4x - 12 = 3x - 9 true? (Section 1.3)

(C) 1 (A) -1 (\mathbf{B}) 0 **(D)** 3

