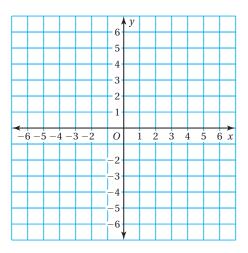
2.1 Graphing Linear Equations

Essential Question How can you recognize a linear equation?


How can you draw its graph?

1 ACTIVITY: Graphing a Linear Equation

Work with a partner.

- **a.** Use the equation $y = \frac{1}{2}x + 1$ to complete the table. (Choose any two *x*-values and find the *y*-values.)
- **b.** Write the two ordered pairs given by the table. These are called **solution points** of the equation.
- **c. PRECISION** Plot the two solution points. Draw a line *exactly* through the two points.
- **d.** Find a different point on the line. Check that this point is a solution point of the equation $y = \frac{1}{2}x + 1$.
- **e. LOGIC** Do you think it is true that *any* point on the line is a solution point of the equation $y = \frac{1}{2}x + 1$? Explain.

	Solution Points		
X			
$y=\frac{1}{2}x+1$			

f. Choose five additional *x*-values for the table. (Choose positive and negative *x*-values.) Plot the five corresponding solution points. Does each point lie on the line?

	Solution Points			
Х				
$y = \frac{1}{2}x + 1$				

- **g. LOGIC** Do you think it is true that *any* solution point of the equation $y = \frac{1}{2}x + 1$ is a point on the line? Explain.
- **h. THE MEANING OF A WORD** Why is y = ax + b called a *linear equation*?

Graphing Equations

In this lesson, you will

- understand that lines represent solutions of linear equations.
- graph linear equations. Learning Standards A.CED.2 A.REI.10

ACTIVITY: Using a Graphing Calculator

Math Practice

Recognize **Usefulness of Tools**

What are some advantages and disadvantages of using a graphing calculator to graph a linear equation?

Use a graphing calculator to graph y = 2x + 5.

- **a.** Enter the equation y = 2x + 5 into your calculator.
- Ploti Plot2 Plot3 Y1**8**2X+5

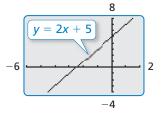
This is the

standard

viewing

window.

WINDOW Kmin=-1 Kmax=10


sçl=î

min=

- **b.** Check the settings of the *viewing window*. The boundaries of the graph are set by the minimum and maximum *x*- and *y*-values. The number of units between the tick marks are set by the *x*- and *y*-scales.
- **c.** Graph y = 2x + 5 on your calculator.

- **d.** Change the settings of the viewing window to match those shown.
 - Compare the two graphs.

What Is Your Answer?

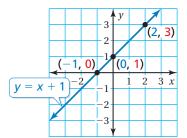
- 3. IN YOUR OWN WORDS How can you recognize a linear equation? How can you draw its graph? Write an equation that is linear. Write an equation that is *not* linear.
- **4.** Use a graphing calculator to graph y = 5x 12 in the standard viewing window.
 - **a.** Can you tell where the line crosses the *x*-axis? Can you tell where the line crosses the y-axis?
 - **b.** How can you adjust the viewing window so that you can determine where the line crosses the x- and y-axes?
- **5. CHOOSE TOOLS** You want to graph y = 2.5x 3.8. Would you graph it by hand or using a graphing calculator? Why?

Practice

Use what you learned about graphing linear equations to complete Exercises 3 and 4 on page 46.

Key Vocabulary

linear equation, p. 44 solution of a linear equation, p. 44


60 Key Idea

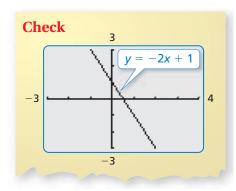
Linear Equations

A **linear equation** is an equation whose graph is a line. The points on the line are **solutions** of the equation.

You can use a graph to show the solutions of a linear equation. The graph below is for the equation y = x + 1.

x y (x,		(x, y)
-1	0	(-1, <mark>0</mark>)
0	1	(<mark>0, 1</mark>)
2	3	(2, 3)

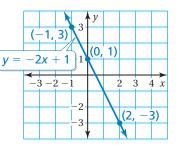
Remember


An ordered pair (x, y) is used to locate a point in a coordinate plane.

EXAMPLE

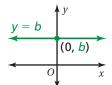
Graphing a Linear Equation

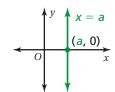
Graph y = -2x + 1.


Step 1: Make a table of values.

X	y=-2x+1	У	(x, y)
-1	y = -2(-1) + 1	3	(-1, 3)
0	y = -2(0) + 1	1	(0, 1)
2	y = -2(2) + 1	-3	(2, -3)

Step 2: Plot the ordered pairs.


Step 3: Draw a line through the points.


60 Key Idea

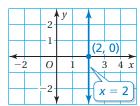
Graphing Horizontal and Vertical Lines

The graph of y = b is a horizontal line passing through (0, b).

The graph of x = a is a vertical line passing through (a, 0).

EXAMPLE

Graphing a Horizontal Line and a Vertical Line


a. Graph y = -3.

The graph of y = -3 is a horizontal line passing through (0, -3). Draw a horizontal line through this point.

	-	y	
-3 -2	0	1 :	2 3 x
	-2-	(0, -	3)
	-4	y =	-3

b. Graph x = 2.

The graph of x = 2 is a vertical line passing through (2, 0). Draw a vertical line through this point.

On Your Own

Graph the linear equation. Use a graphing calculator to check your graph, if possible.

1.
$$y = 3x$$

1.
$$y = 3x$$
 2. $y = -\frac{1}{2}x + 2$ **3.** $x = -4$

3.
$$x = -4$$

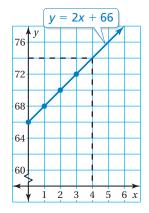
4.
$$y = -1.5$$

EXAMPLE

Real-Life Application

The wind speed y (in miles per hour) of a tropical storm is y = 2x + 66, where x is the number of hours after the storm enters the Gulf of Mexico.

- a. Graph the equation.
- b. When does the storm become a hurricane?



A tropical storm becomes a hurricane when wind speeds are at least 74 miles per hour.

a. Make a table of values.

X	y=2x+66	У	(x, y)
0	y = 2(0) + 66	66	(0, 66)
1	y = 2(1) + 66	68	(1, 68)
2	y = 2(2) + 66	70	(2, 70)
3	y = 2(3) + 66	72	(3, 72)

Plot the ordered pairs and draw a line through the points.

b. From the graph, you can see that y = 74 when x = 4. So, the storm becomes a hurricane 4 hours after it enters the Gulf of Mexico.

On Your Own

5. WHAT IF? In Example 3, the wind speed of the storm is y = 1.5x + 62. When does the storm become a hurricane?

2.1 **Exercises**

Vocabulary and Concept Check

- 1. **VOCABULARY** What type of graph represents the solutions of the equation y = 2x + 3?
- 2. WHICH ONE DOESN'T BELONG? Which equation does not belong with the other three? Explain your reasoning.

$$y = 0.5x - 0.2$$

$$4x + 3 = y$$

$$y = x^2 + 6$$

$$y = 0.5x - 0.2$$
 $y = x^2 + 6$ $\frac{3}{4}x + \frac{1}{3} = y$

Practice and Problem Solving

PRECISION Copy and complete the table. Plot the two solution points and draw a line exactly through the two points. Find a different solution point on the line.

х	
y=3x-1	

X	
$y=\frac{1}{3}x+2$	

Graph the linear equation. Use a graphing calculator to check your graph, if possible.

5.
$$y = -5x$$

1 2 5.
$$y = -5x$$
 6. $y = \frac{1}{4}x$

7.
$$y = 5$$

8.
$$x = -6$$

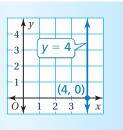
9.
$$y = x - 3$$

10.
$$y = -7x - 1$$

11.
$$y = -\frac{x}{3} + 4$$

5.
$$y = -5x$$
 6. $y = \frac{1}{4}x$ 7. $y = 5$ 8. $x = -6$ 9. $y = x - 3$ 10. $y = -7x - 1$ 11. $y = -\frac{x}{3} + 4$ 12. $y = \frac{3}{4}x - \frac{1}{2}$ 13. $y = -\frac{2}{3}$ 14. $y = 6.75$ 15. $x = -0.5$ 16. $x = \frac{1}{4}$

13.
$$y = -\frac{2}{3}$$


14.
$$y = 6.75$$

15.
$$x = -0.5$$

16.
$$x = \frac{1}{4}$$

- 17. ERROR ANALYSIS Describe and correct the error in graphing the equation.
- **18. MESSAGING** You sign up for an unlimited text messaging plan for your cell phone. The equation y = 20 represents the cost y (in dollars) for sending x text messages. Graph the equation. What does the graph tell you?

- **19.** MAIL The equation y = 2x + 3 represents the cost y (in dollars) of mailing a package that weighs *x* pounds.
 - **a.** Graph the equation.
 - **b.** Use the graph to estimate how much it costs to mail the package.
 - **c.** Use the equation to find exactly how much it costs to mail the package.

Solve for y. Then graph the equation. Use a graphing calculator to check your graph.

20.
$$y - 3x = 1$$

21.
$$5x + 2y = 4$$

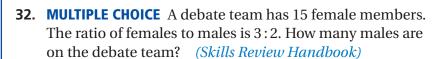
22.
$$-\frac{1}{3}y + 4x = 3$$

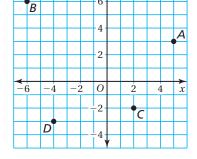
23.
$$x + 0.5y = 1.5$$

- **24. SAVINGS** You have \$100 in your savings account and plan to deposit \$12.50 each month.
 - **a.** Write and graph a linear equation that represents the balance in your account.
 - **b.** How many months will it take you to save enough money to buy 10 acres of land on Mars?

- **25. CAMERA** One second of video on your digital camera uses the same amount of memory as two pictures. Your camera can store 250 pictures.
 - **a.** Write and graph a linear equation that represents the number *y* of pictures your camera can store if you take *x* seconds of video.
 - **b.** How many pictures can your camera store after you take the video shown?
- **26. PROBLEM SOLVING** Along the U.S. Atlantic Coast, the sea level is rising about 2 millimeters per year. How many millimeters has sea level risen since you were born? How do you know? Use a linear equation and a graph to justify your answer.
- **27.** Geometry The sum *S* of the measures of the angles of a polygon is $S = (n-2) \cdot 180^\circ$, where *n* is the number of sides of the polygon.
 - **a.** Plot four points (n, S) that satisfy the equation. Do the points lie on a line? Explain your reasoning.
 - **b.** Does the value n = 3.5 make sense in the context of the problem? Explain your reasoning.

Fair Game Review What you learned in previous grades & lessons


Write the ordered pair corresponding to the point. (Skills Review Handbook)


28. Point *A*

29. Point *B*

30. Point *C*

31. Point *D*

 \bigcirc 6

B) 10

C 22

D 25